Chứng tỏ rằng nếu 2 số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7 .
chứng tỏ rằng :
a) nếu hai số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7
Gọi 2 số đó là a và b và d là số dư khi chia a cho 7 và chia b cho 7
\(\Rightarrow\left\{{}\begin{matrix}a=7k+d\\b=7n+d\end{matrix}\right.\) \(\left(k,n\in Z\right)\)
\(\Rightarrow a-b=7k+d-7n-d=7\left(k-n\right)⋮7\left(đpcm\right)\)
Chứng tỏ rằng 11 là ước của số có dạng abba.
Chứng tỏ rằng nếu 2 số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7.
Ta có:abba=1001a+110b=11(91a+10b) chia hết cho 11
Vậy 11 là ước của số có dạng abba
Gọi 2 số chia 7 có cùng số dư là 7a+c và 7b+c(c là số dư khi chia cho 7 và c<7)
=>7a+c-7b-c=7a-7b=(7(a-b) chia hết cho 7
Vậy hiệu 2 số chia 7 có cùng số dư thì chia hết cho 7
ta có abbc=1000a+100b+10b+a=(1000a+a)+(100b+10b)=a(1000+1)+b(100+10)
=1001a+110b
ta có 1001 chia hết cho 11 =>1001a chia hết cho 11
110 cia hết cho 11=>110b chia hết cho 11
suy ra 1001a+110b chia hết cho 11 hay abba chia hết cho 11
hay 11 là ước của số có dạng abba.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn đừng làm như vậy !!!
chứng tỏ rằng :
a) nếu 2 số khi chia cho 7 có cùng số dư thì hiệu của chúng chia hết cho 7 . Chứng minh tổng quát .
b) nếu 2 số không chia hết cho 3 mà có số dư khác nhau thì tổng của chúng chia hết cho 3
chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7.
gọi a và b là hai số có cùng số dư là r khi chia cho 7 (giả sử a > hoặc bằng b)
ta có:a=7m+r,b=7n+r(m,m thuộc N)
khi đó a-b=(7m+r)-(7n-r)=7m-7n chia hết cho 7
Chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7.
Gọi a và b là 2 số có cùng số dư khi chia cho 7 (giả sử a\(\ge\)b)
Ta có a=7m +r ; b=7n +r (m ; n \(\in\)N)
Khi đó a-b = ( 7m - r ) - ( 7n - r ) = 7m - 7n \(⋮\)7 (điều phải chứng minh)
Chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7.
\(\text{ Gọi 2 số cùng số dư khi chia cho 7 là a;b(a,b thuộc Z) }\)
\(\text{Gọi a/7=q+k(K là số dư q là thương) }\)
\(\text{Gọi b/7=p+k(p là thương, k là số dư) }\)
\(\text{suy ra a/7-b/7=q -- p }\)
\(\text{(a-b)/7 = q -- p }\)
\(\text{a-b = (q -- p) X7 }\)
\(\text{có (q -- p) X 7chia hết cho 7 suy ra a-b chia hết cho 7 }\)
Gọi hai số đó là a,b,r là số dư khi chia cho 7(10<a,b<0. a,b thuộc N) . Giả sử a > hoặc=b
Theo bài ra ta có :
a=7m+r,b=7n+r(m,n thuộc N)
Khi đó a-b=(7m+r)-(7n+r)=7m-7n
Vì 7 chia hết cho 7 nên 7m,7n cũng chia hết cho 7.Vậy 7m-7n chia hết cho 7
Chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
ta có :
a : 7 = q dư c
b : 7 = d dư c
a=(7.q)+c
b=(7.d)+c
a-b =( 7 . q ) + c - ( 7 . d ) + c
a-b=7.q-7.d
a-b=7.(q-d)
=> a-b chia hết cho 7
cũng có thể là b-alàm tương tự
Gọi hai số đó là 7k+a và 7m+a (do 2 số đó có cùng số dư khi chia cho bảy)
7k+a -7m+a =7k-7m=7.(k-m)
là số chia hết cho bảy
Chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7 ?
Gọi hai số đó là a và b \(\left(a,b\in N;a\ge b\right)\)
Ta có : \(a=7k+r\left(k\in N\right)\)
\(b=7q+r\left(q\in N\right)\)
( trong đó : \(r\in\left\{0;1;2;...\right\};k\ge q\) )
\(\Rightarrow a-b=\left(7k+r\right)-\left(7q+r\right)\)
\(=7k+r-7q-r=7k-7q+r-r\)
\(=7\left(k-q\right)+0=7\left(k-q\right)⋮7\)
Vì \(7⋮7\) ; \(k,q\in N,k\ge q\)
\(\Rightarrow\left(7k+r\right)-\left(7q+r\right)⋮7\Rightarrow a-b⋮7\)
Vậy \(a-b⋮7\)
Gọi hai số là \(a,b\left(a,b\in N\right)\)
Theo đề bài ta có:
\(a=7m+k\left(m\in N,0< k< 7\right)\\ b=7n+k\left(n\in N,0< k< 7\right)\)
\(\Rightarrow a-b=\left(7m+k\right)-\left(7n+k\right)\\ =7m+k-7n-k\\ =7m+7n+\left(k-k\right)\\ =7\cdot\left(m+n\right)⋮7\\ \Rightarrow\left(a-b\right)⋮7\)
Vậy hiệu hai số có cùng số dư khi chia cho 7 là một số chia hết cho 7
Gọi a và b là hai số có cùng số dư r khi chia cho 7 ( giả sử a\(\ge\)b)
Ta có: a=7m+r,b=7n+r (m,n\(\in N\) )
Khi đó a-b=(7m+r)-(7m+r)=7m-7n,chia hết cho 7
Chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7