7. Tìm ảnh d’ của đường thẳng d: 2x – y – 1 = 0 qua phép tịnh tiến theo vector v=(2;-1)
Tìm ảnh của đường thẳng d : 2 x + 3 y − 2 = 0 qua phép tịnh tiến theo vecto v → = 2 ; 3 là
A. 2 x + 3 y + 15 = 0
B. 2 x − 3 y + 15 = 0
C. 2 x − 3 y − 15 = 0
D. 2 x + 3 y − 15 = 0
Trong mặt phẳng tọa độ Oxy cho vectơ v → = - 1 ; 2 , A 3 ; 5 , B - 1 ; 1 và đường thẳng d có phương trình x – 2 y + 3 = 0 .
a. Tìm tọa độ của các điểm A' , B' theo thứ tự là ảnh của A, B qua phép tịnh tiến theo vecto v →
b. Tìm tọa độ của điểm C sao cho A là ảnh của C qua phép tịnh tiến theo vectơ v →
c. Tìm phương trình của đường thẳng d' là ảnh của d qua phép tịnh tiến theo v .
c) Đường thẳng d có vecto pháp tuyến là n→(1;-2) nên 1 vecto chỉ phương của d là(2; 1)
=> Vecto v→ không cùng phương với vecto chỉ phương của đường thẳng d
=> Qua phép tịnh tiến v→ biến đường thẳng d thành đường thẳng d’ song song với d.
Nên đường thẳng d’ có dạng : x- 2y + m= 0
Lại có B(-1; 1) d nên B’(-2;3) d’
Thay tọa độ điểm B’ vào phương trình d’ ta được:
-2 -2.3 +m =0 ⇔ m= 8
Vậy phương trình đường thẳng d’ là:x- 2y + 8 = 0
a) cho d: 2x-3y+12=0. Tìm ảnh của d qua phép tịnh tiến theo v = (4; -3) b) cho d : 2x+y-4=0 và A (3;1) ;B (-1;8) . Tìm ảnh d' của d qua phép tịnh tiến theo AB->
a, Gọi M(3 ; 6) ∈ d. Gọi \(T_{\overrightarrow{v}}\left(M\right)=M'\)
⇒ \(\overrightarrow{MM'}=\overrightarrow{v}=\left(4;-3\right)\)
⇒ M' (7 ; 3)
\(T_{\overrightarrow{v}}\left(d\right)=d'\) ⇒ d' // d và d' đi qua M' (7 ; 3)
⇒ d' : 2x - 3y - 5 = 0
b, làm tương tự
Viết pt đường thẳng d’ là ảnh của d: 2x-5y=1=0 qua phép tịnh tiến theo v ( -5;3)
mog mn giúp đỡ
Trong mặt phẳng tọa độ Oxy cho điểm A(4; – 1), đường thẳng (d) : 3x – 2y + 1 = 0 và đường tròn (C) :
x^2 + y^2 - 2x + 4y -4 = 0
a. Tìm tọa độ A’ và phương trình (d’) lần lượt là ảnh của A và (d) qua phép tịnh tiến theo vectơ v = (– 2; 3)
b. Tìm phương trình đường tròn (C’) là ảnh của đường tròn (C) qua phép đối xứng trục là đường thẳng (D) : x – y = 0
Trong mặt phẳng Oxy, cho vectơ v = (3;1) và đường thẳng d có phương trình 2x – y = 0. Tìm ảnh của d qua phép dời hình có được bằng cách thực hiện liên tiếp phép quay tâm O góc 90 ο và phép tịnh tiến theo vectơ v.
Gọi d 1 là ảnh của d qua phép quay tâm 0 góc 90 o . Vì d chứa tâm quay O nên d 1 cũng chứa O. Ngoài ra d 1 vuông góc với d nên d 1 có phương trinh: 9x + 2y = 0.
Gọi d' là ảnh của d 1 qua phép tịnh tiến vectơ v. Khi đó phương trình của d' có dạng x + 2y + C = 0. Vì d' chứa O′(3;1) là ảnh của O qua phép tịnh tiến vectơ v nên 3 + 2 + C = 0 từ đó C = -5. Vậy phương trình của d' là x + 2y – 5 = 0.
Trong mặt phẳng Oxy, cho điểm A(1;2), B(2;4), C(−1;3) và đường thẳng (d) : x + y - 5 = 0 và đường tròn (C) : ((x - 2) ^ 2) + (y + 1) ^ 2 = 4 . a. Tìm ảnh của vec A qua phép tịnh tiến theo vec v = (3; 1) . b. Tìm đường thẳng (d') là ảnh của đường thẳng (d) qua phép tịnh tiến theo a = 3i - 2j C. Tìm đường tròn (C') là ảnh của đường tròn (C) qua phép tịnh tiến theo AB . d. Tìm vec u, biết T vec u (B) = C
a: Ảnh của A là:
x=1+3=4 và y=2+1=3
b: (d') là ảnh của (d) qua phép tịnh tiến vecto a=(3;-2)
=>(d'): x+y+c=0
Lấy B(1;4) thuộc (d)
=>B'(4;2)
Thay x=4 và y=2 vào (d'), ta được:
c+4+2=0
=>c=-6
d: Theo đề,ta có:
2+x=-1 và 4+y=3
=>x=-3 và y=-1
=>vecto u=(-3;-1)
Trong mặt phẳng Oxy cho điểm M(3;5) , đường thẳng d:3x+2y-4=0 và đường tròn c:x^2+y^2-2x+4y-4=0
a. Tìm ảnh của điểm M và đường thẳng d qua phép tịnh tiến theo vectơ = (2;1)
b. Tìm ảnh của đường tròn (C) qua phép quay tâm O góc quay 90 độ (O là gốc tọa độ).
Trong mặt phẳng Oxy cho ường thẳng d: x + 2y –2014 = 0
a) Viết phương trình đường thẳng d’ là ảnh của d qua phép Tịnh tiến theo vectơ v=(2;7).
b/ Tìm phương trình đường thẳng d’ sao cho đt (d) là ảnh của d’qua phép Tịnh tiến theo vectơ v=(2;7)