Cho tam giác ABC vuông tại A, kẻ đường cao AH. Biết AH = 4cm, H B H C = 1 4 . Tính chu vi tam giác ABC
A. 5 5 + 8 cm
B. 6 5 + 12 cm
C. 4 5 + 8 cm
D. 6 5 + 10 cm
ai biết giải giúp minh với:
Câu 1:Cho tam giác ABC có 3 góc nhọn,các đường cao AD,BE,CK cắt nhau tại H.chứng minh
a,tứ giác HECD nội tiếp
b,Tia DA là tia phân giác góc EDK
Cây 2:cho tam giác ABC vuông tai A,biết ab=6cm,ac=8cm
A.tính bc
B,kẻ đường cao AH,tính Ah
Câu 3:Cho tam giác abc vuông tại A,BIẾT AC=4cm,Bc=5cm.
A,Tính cạnh AB
B,kẻ đường cao AH,TÍNH AH
Câu 4:Cho tam giác vuông ABC,vuông tại A(H thuộc BC).bIẾT AB=12CM,AC=5CM.tính BH,CH
Câu 5:cho tam giác ABC vuông tại A,đường cao AH(H THUỘC BC).biết BC=18cm,BH=6cm.Tính độ dài các cạnh AB,AC
Cau 6:Cho tam giác ABC,vuông tại A,biết AB=4cm,đường cao AH=2CM,tính các góc và các cạnh còn lại cua tam giac.?
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
câu 1:Cho tam giác ABC,vuông tại A,đường cáo AH(H thuộc BC).Biết AB=12CM,Ac=5cm.tính BH,CH
Câu 2:cho tam giác ABC vuông tại A,đường cáo AH(H thuộc BC).Biết AB=18cm,BH=6cm.tính đô dài các cạnh AB,AC
Câu 3:cho tam giac abc vuông tại a,biết ab-3cm,ac=4cm,
a.tinh bc
b:kẻ đường cao ah,tính bh
Câu 4:cho tam giác ABC Vuông tại A,biết ab=4cm,đường cao ah=2cm.Tính các góc và các cạnh còn lại của tam giác
Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o
Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2
cho tam giác ABC vuông tại A,kẻ đường cao AH(H thuộc BC),biết BH=4cm,CH=9cm
a,C/m tam giác AHC đồng dạng với tam giác BHA
b,Tính độ dài AH
c,Kẻ HM,HN vuông góc AB,AC.C/m:AM.AB=AN.AC
a: Xét ΔAHC vuông tại H và ΔBHA vuông tại H có
góc HAC=góc HBA
=>ΔAHC đồng dạng với ΔBHA
b: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
c: ΔAHB vuông tại H có HM vuông góc AB
nên AM*AB=AH^2
ΔAHC vuông tại H có HN vuông góc AC
nên AN*AC=AH^2
=>AM*AB=AN*AC
cho tam giác ABC vuông tại A, có đường cao AH; BH = 4cm, CH= 9cm. Từ H kẻ HD vuông góc AB, HE vuông góc AC.
a. Tính AH
cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC)
a) biết HB = 4cm , HC = 9cm. tính AH và số đo góc ABC
b) gọi D là hình chiếu của H trên AB; E là hình chiếu của H trên AC. chứng minh CE.BD.AC.AB = AH4
c) kẻ AI vuông góc với ED (I thuộc BC). chứng minh I là trung điểm BC
giải chi tiết giúp mình ạ! mình cảm ơn nhiều<3
a/
\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AH=\sqrt{HB.HC}=\sqrt{4.9}=6cm\)
\(\tan\widehat{ABC}=\dfrac{AH}{HB}=\dfrac{6}{4}=\dfrac{3}{2}\)
b/
Xét tg vuông AHB có
\(HB^2=BD.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông AHC có
\(HC^2=CE.AC\) (lý do như trên)
\(CE.BD.AC.AB=HB^2.HC^2=\left(HB.HC\right)^2\)
Mà \(HB.HC=AH^2\) (cmt)
\(\Rightarrow CE.BD.AC.AB=AH^4\)
c/
\(HD\perp AB;AC\perp AB\) => HD//AC => HD//AE
\(HE\perp AC;AB\perp AC\) => HE//AB => HE//AD
=> ADHE là hình bình hành mà \(\widehat{A}=90^o\) => ADHE là HCN
Xét tg vuông ADH và tg vuông ADE có
HD = AE (cạnh đối HCN)
AD chung
=> tg ADH = tg ADE (Hai tg vuông có 2 cạnh góc vuông = nhau)
\(\Rightarrow\widehat{AED}=\widehat{AHD}\)
\(\widehat{AHD}=\widehat{B}\) (cùng phụ với \(\widehat{BAH}\) )
\(\Rightarrow\widehat{AED}=\widehat{B}\) (1)
\(\widehat{C}+\widehat{B}=90^o\) (2)
\(\widehat{IAE}+\widehat{AED}=90^o\Rightarrow\widehat{IAE}+\widehat{B}=90^o\) (3)
Từ (2) và (3) => \(\widehat{IAE}=\widehat{C}\) => tg AIC cân tại I => IA=IC
Ta có
\(\widehat{IAE}+\widehat{BAI}=\widehat{A}=90^o\)
\(\Rightarrow\widehat{C}+\widehat{BAI}=90^o\) mà \(\widehat{C}+\widehat{B}=90^o\)
\(\Rightarrow\widehat{BAI}=\widehat{B}\) => tg ABI cân tại I => IA=IB
Mà IA= IC (cmt)
=> IB=IC => I là trung điểm của BC
Cho tam giác ABC vuông tại A, đường cao AH. Gọi I, K là chân các đường vuông góc kẻ từ H xuống AB, AC. Tính diện tích tứ giác AIHK biết BC= 10cm, AH = 4cm.
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm, AC = 4cm. a) Tính độ dài các đoạn thẳng AH, CH. b) Vẽ đường thẳng d vuông góc với AC tại C, cắt AH tại D. Kẻ BE vuông góc với CD tại E. Tính góc DAC? Diện tích tam giác BCD? Cho tam giác ABC vuông tại A, đường cao AH . Biết AB =3cm,4C=4cm. a) Tinh độ dài các đoạn thẳng AHẠCH . b) Vẽ đường thẳng d vuông góc với AC tại C, ả cắt AH tại D.Kẻ BE vuông góc với CD tại E. Tỉnh góc D4C ? Diện tích tam giác BCD? c) Chứng minh: 4C* = ABCD. d) Từ H kẻ đường thẳng vuông góc với AC tại I cắt BD tại K. So sánh HI và HK?
Cho tam giác ABC vuông tại A ,đường cao AH (H∈BC).Biết AB=3cm;BC=5cm.Khi đó đoạn AH bằng : A.2,4cm B.3cm C.4cm D.3,75cm
1.Cho tam giác ABC vuông tại A. Gọi H là chân đường cao hạ từ A. Biết rằng AB = 7cm, AC = 9cm. Tính BH, CH, AH.
2. Cho tam giác ABC vuông tại A, đường cao AH. BH = 4cm, CH=9cm. Tính AH,AB,AC?
BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6
\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)
\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)