tìm giá trị nhỏ nhất của biểu thức A = x2+xy+y2-3x-3y
Cho các số thực x, y thoả mãn 2 x + y - 1 ( 3 x + y + 1 ) = 3 x + 3 y + 1 . Giá trị nhỏ nhất của biểu thức P = x 2 + x y + y 2 bằng
A. 3 4
B. 0
C. 1 4
D. 1 2
Cho các số thực x, y thoả mãn 2 x + y - 1 ( 3 x + y + 1 ) = 3 x + 3 y + 1 . Giá trị nhỏ nhất của biểu thức P= x 2 + x y + y 2 bằng
A. 3 4
B. 0.
C. 1 4
D. 1 2
tìm giá trị nhỏ nhất của biểu thức
A = x2 + y2 +z2 - yz - 4x - 3y + 2027
\(A=x^2+y^2+z^2-yz-4x-3y+2027\)
\(\Rightarrow4A=4x^2+4y^2+4z^2-4yz-16x-12y+8108=4x^2-16x+16+3y^2+12y+12+y^2-4yz+4z^2+8080=4\left(x-2\right)^2+3\left(y+2\right)^2+\left(y-2z\right)^2+8080\)
Vì \(4\left(x-2\right)^2\ge0\)
\(3\left(y+2\right)^2\ge0\)
\(\left(y-2z\right)^2\ge0\)
\(\Rightarrow4A\ge8080\Rightarrow A\ge2020\)
\(ĐTXR\Leftrightarrow x=2,y=-2,z=-1\)
mình cần gấp mong mn giải cho mình nhanh
1. tìm giá trị nhỏ nhất của biểu thức
A= (x+3)2+(x-5)2
2. tìm giá trị lớn nhất của biểu thức
A= x2+y2 với x+3y=10
Bài 1:
\(A=x^2+6x+9+x^2-10x+25\)
\(=2x^2+4x+34\)
\(=2\left(x^2+2x+17\right)\)
\(=2\left(x+1\right)^2+32>=32\forall x\)
Dấu '=' xảy ra khi x=-1
Tìm giá trị nhỏ nhất của biểu thức x2+y2+z2-yz-4x-3y+2018
Tìm giá trị nhỏ nhất của biểu thức A=x^2 +xy +y^2 -3x -3y
Cho x, y ∈ R thỏa mãn x + y + xy = 5 4 . Tìm giá trị nhỏ nhất của biểu thức A = x 2 + y 2
Ta có: 2 x 2 + 1 2 ≥ 2 x ; 2 y 2 + 1 2 ≥ 2 y và x 2 + y 2 ≥ 2 x y
Cộng vế với vế các BĐT trên ta được:
3 x 2 + y 2 + 1 ≥ 2 x + y + x y = 5 2
=> A = x 2 + y 2 ≥ 1 2
Từ đó tìm được A m i n = 1 2 <=> x = y = 1 2
Tìm giá trị nhỏ nhất của biểu thức:
a, 3x2 – 3x + 1
b, x2 – 2x + y2 + 4y + 6
c, 2x2 + y2 – 2xy + 1
\(a,=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)
Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)
\(b,=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(c,=\left(x^2-2xy+y^2\right)+x^2+1=\left(x-y\right)^2+x^2+1\ge1\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=0\end{matrix}\right.\Leftrightarrow x=y=0\)
Tìm giá trị nhỏ nhất của các biểu thức sau:
a) M = x 2 – 3x + 10;
b) N = 2 x 2 + 5 y 2 + 4xy + 8x – 4y – 100.
a) Từ M = x − 3 2 2 + 31 4 ≥ 31 4 ⇒ M min = 31 4 ⇔ x = 3 2 .
b) Ta có N = ( x + 2 y ) 2 + ( y – 2 ) 2 + ( x + 4 ) 2 – 120 ≥ - 120 .
Tìm được N min = -120 Û x = -4 và y = 2.
Tìm giá trị nhỏ nhất của biểu thức: |2x-3y|+|4z-3x|+|xy+yz+xz-2484|
Đặt A=\(\left|2x-3y\right|+\left|4z-3x\right|+\left|xy+yz+xz-2484\right|\)
Ta có \(\left|2x-3y\right|\ge0;\left|4z-3x\right|\ge0;\left|xy+yz+xy-2484\right|\ge0\)
\(\Rightarrow A\ge0\Rightarrow Amin=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-3y=0\\4z-3x=0\\xy+yz+xz-2484=0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{12}=\frac{y}{8}\left(1\right)\\\frac{x}{4}=\frac{z}{3}\Rightarrow\frac{x}{12}=\frac{z}{9}\left(2\right)\\xy+yz+xz=2484\left(3\right)\end{cases}}}\)
Từ (1)(2)\(\Rightarrow\frac{x}{12}=\frac{y}{8}=\frac{z}{9}=k\left(k\ne0\right)\)
\(\Rightarrow x=12k;y=8k;z=9k\)
Thay vào 3 ta có \(12.8.k^2+8.9.k^2+12.9.k^2=2484\)
\(\Rightarrow k^2\left(12.8+8.9+12.9\right)=2484\)
\(\Rightarrow k^2.276=2484\)
\(\Rightarrow k^2=9=\left(\pm3\right)^2\)
\(\Rightarrow k=\pm3\)
+Nếu k =3 thì x=36 ; y=24 ; z=27
+Nếu k = -3thì x=-36 ; y=-24 ; z=-27
Vậy \(Amin=0\Leftrightarrow\left(x;y;z\right)\in\left\{\left(36;24;27\right);\left(-36;-24;-27\right)\right\}\)