Cho x 8 = y 7 = z 12 và x + y + z = -108. Số lớn nhất trong ba số x; y; z là
A. 27
B. -27
C. -18
D. -45
Tìm các số x,y,z biết:
a) x:y = 2:5 và 2x - y = 3
b) x/2 = y/3; y/4 = z/7 và 2x - y + z =50
c) x/2 = y/3 = z/4 và x2 - y2 + 2z2 = 108
Lời giải:
a. Áp dụng TCDTSBN:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow \frac{x}{2}=\frac{y}{5}=\frac{2x}{4}=\frac{y}{5}=\frac{2x-y}{4-5}=\frac{3}{-1}=-3\)
$\Rightarrow x=-3.2=-6; y=-3.5=-15$
b. Áp dụng TCDTSBN:
$\frac{x}{2}=\frac{y}{3}; \frac{y}{4}=\frac{z}{7}$
$\Rightarrow \frac{x}{8}=\frac{y}{12}=\frac{z}{21}$
$=\frac{2x}{16}=\frac{y}{12}=\frac{z}{21}=\frac{2x-y+z}{16-12+21}=\frac{50}{25}=2$
$\Rightarrow x=8.2=16; y=2.12=24; z=2.21=42$
c.
$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$
$\Rightarrow \frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}$
$=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4$
$\Rightarrow x^2=4.4=16; y^2=9.4=36; z^2=4.4=16$
Kết hợp với đkxđ suy ra:
$(x,y,z)=(4,6,4); (-4; -6; -4)$
tìm x y z biết x/3=y/5=z/8 và 2x+y-z=108
Tìm x, y, z biết \(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\) và 2x + y - x = 108
Giải
Từ \(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\) suy ra: \(\frac{2x}{6}=\frac{y}{5}=\frac{z}{8}\)
Theo đề bài, ta có:
\(\frac{2x}{6}=\frac{y}{5}=\frac{z}{8}\) và 2x + y - z = 108
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{6}=\frac{y}{5}=\frac{z}{8}=\frac{2x+y-z}{6+5-8}=\frac{108}{3}=36\)
Do đó: \(\frac{2x}{6}=36=>x=36\cdot6:2=108\)
\(\frac{y}{5}=36=>y=36\cdot5=180\)
\(\frac{z}{8}=36=>z=36\cdot8=288\)
Vậy \(\left\{\left(x;y;z\right)\right\}\in\left\{\left(108;180;288\right)\right\}\)
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
Trong 3 số nguyên x,y,z có một số dương, một số âm, và một số bằng 0. Em hãy chỉ ra mỗi số đó, biết:
a) y2 = |x|.(z-x)
b) x8+y6z = y7
Câu 2: Tìm GTLN (giá trị lớn nhất) và GTNN (giá trị nhỏ nhất) của:
a)A = |-x+8| - 21
b)B = |-x-17|+|y-36|+12
c)C = -|2x-8|-35
d)D=3.(3x-12)2-37
cho x,y,z thuộc Q biết x+y=7/12, y+z= -19/24 , z+x=1/8. tìm x,y,z
x + y = 7/12 => x = 7/12 - y
y + z = -19/24 => z = -19/24 - y
Mà z + x = 1/8 => 7/12 - y - 19/24 - y = 1/8
=> 2y = 7/12 - 19/24 - 1/8 => 2y = -1/3
=> y = -1/6
1, Cho x+y+z =1 và x,y,z>0 . Tìm giá trị lớn nhất của B= xyz(x+y)(y+z)(z+x)
2, Tìm số nguyên x để x^2 +x + 12 là số chính phương
a) \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\) và \(xyz=-108\)
Đặt: \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=k\)
\(\Rightarrow x=2k\)
\(y=\frac{3}{2}k\)
\(z=\frac{4}{3}k\)
\(\Rightarrow xyz=2k.\frac{3}{2}k.\frac{4}{3}k=4k^3=-108\Rightarrow k^3=-27\Rightarrow k=\sqrt[3]{-27}=-3\)
Vậy:
\(x=2.\left(-3\right)=-6\)
\(y=\frac{3}{2}.\left(-3\right)=-\frac{9}{2}\)
\(z=\frac{4}{3}.\left(-3\right)=-4\)
\(\frac{x}{y}=\frac{7}{20}\Leftrightarrow\frac{x}{7}=\frac{y}{20}\)
\(\frac{y}{z}=\frac{5}{8}\Leftrightarrow\frac{y}{5}=\frac{z}{8}\Leftrightarrow\frac{y}{20}=\frac{z}{32}\)
\(\Rightarrow\frac{x}{7}=\frac{y}{20}=\frac{z}{32}\) và \(3x+5y+7z=123\)
ADTCCDTSBN, ta có:
\(\frac{x}{7}=\frac{y}{20}=\frac{z}{32}=\frac{3x+5y+7z}{21+100+224}=\frac{123}{345}=\frac{41}{115}\)
\(\Rightarrow x=\frac{41}{115}.7=\frac{287}{115}\)
\(y=\frac{41}{115}.20=\frac{164}{23}\)
\(z=\frac{41}{115}.32=\frac{1312}{115}\)
1) Tìm x,y,z thuộc Z biết: -1/2<x/24<y/12<z/8<-1/3
2) Tìm x,y thuộc Z biết: x-2/3=1/y+1 và x+7<0, y khác 1
3) Tìm 2 phân số có mẫu bằng 9; các tử là hai số tự nhiên liên tiếp sao cho phân số 4/7 nằm giữa hai phân số đó
A) x/2 =y/5 và x+y =-14 B) x/7 = y/5 và x-y=8
C) x/2 =y/5 =z/7 và x+y+z=56 D) x/3 =y/5=z/8 và x+y+z=12
Ai nhanh m tick ha
a) \(\frac{x}{2}=\frac{y}{5}\) và x + y = -14
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-14}{7}=-2\)
=> \(\orbr{\begin{cases}\frac{x}{2}=-2\\\frac{y}{5}=-2\end{cases}}\)=> \(\orbr{\begin{cases}x=-4\\y=-10\end{cases}}\)
b) \(\frac{x}{7}=\frac{y}{5}\) và x - y = 8
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{x-y}{7-5}=\frac{8}{2}=4\)
=> \(\orbr{\begin{cases}\frac{x}{7}=4\\\frac{y}{5}=4\end{cases}}\)=> \(\orbr{\begin{cases}x=28\\y=20\end{cases}}\)
c) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\) và x + y + z = 56
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{x+y+z}{2+5+7}=\frac{56}{14}=4\)
=> \(\hept{\begin{cases}\frac{x}{2}=4\\\frac{y}{5}=4\\\frac{z}{7}=4\end{cases}}\)=> \(\hept{\begin{cases}x=8\\y=20\\z=28\end{cases}}\)
d) \(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}\) và x + y + z = 12
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{3+5+8}=\frac{12}{16}=\frac{3}{4}\)
=> \(\hept{\begin{cases}\frac{x}{3}=\frac{3}{4}\\\frac{y}{5}=\frac{3}{4}\\\frac{z}{8}=\frac{3}{4}\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{15}{4}\\z=6\end{cases}}\)