Cho a, b, c > 0 và a + b + c = 3. Chứng minh rằng \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(ab+c\right)\left(bc+a\right)\left(ca+b\right)\)
Cho a; b; c > 0 sao cho a+b+c=3. Chứng minh rằng
\(\frac{a}{b^2\left(ca+1\right)}+\frac{b}{c^2\left(ab+1\right)}+\frac{c}{a^2\left(bc+1\right)}\ge\frac{9}{\left(1+abc\right)\left(ab+bc+ca\right)}\)
Cho a, b, c là các số thực dương thoả mãn a+b+c=3. Chứng minh rằng:
\(\frac{a}{b^2\left(ca+1\right)}+\frac{b}{c^2\left(ab+1\right)}+\frac{c}{a^2\left(bc+1\right)}\ge\frac{9}{\left(1+abc\right)\left(ab+bc+ca\right)}\)
Theo bđt Cauchy - Schwart ta có:
\(\text{Σ}cyc\frac{c}{a^2\left(bc+1\right)}=\text{Σ}cyc\frac{\frac{1}{a^2}}{b+\frac{1}{c}}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+a+b+c}\)\(=\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+3}\)
\(=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)+3a^2b^2c^2}\)
Đặt \(ab+bc+ca=x;abc=y\).
Ta có: \(\frac{x^2}{xy+3y^2}\ge\frac{9}{x\left(1+y\right)}\Leftrightarrow x^3+x^3y\ge9xy+27y^2\)
\(\Leftrightarrow x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\) ( luôn đúng )
Vậy BĐT đc CM. Dấu '=' xảy ra <=> a=b=c=1
làm sao mà \(x\left(x^2-9y\right)+y\left(x^3-27y\right)\ge0\)lại luôn đúng
với a, b, c >0. Chứng minh rằng: \(\frac{a}{bc\left(c+a\right)}+\frac{b}{ca\left(a+b\right)}+\frac{c}{ab\left(b+c\right)}\ge\frac{27}{2\left(a+b+c\right)^2}\)
\(\frac{a}{bc\left(c+a\right)}+\frac{b}{ca\left(a+b\right)}+\frac{c}{ab\left(b+c\right)}\)
\(=\frac{1}{abc}\left(\frac{a^2}{c+a}+\frac{b^2}{a+b}+\frac{c^2}{b+c}\right)\)
\(\ge\frac{1}{abc}.\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{1}{abc}.\frac{\left(a+b+c\right)}{2}\)
\(\ge\frac{27}{\left(a+b+c\right)^3}.\frac{a+b+c}{2}=\frac{27}{2\left(a+b+c\right)^2}\)
\(VT\ge\frac{\left(a+b+c\right)^2}{2abc\left(a+b+c\right)}=\frac{\left(a+b+c\right)}{2abc}\ge\frac{\left(a+b+c\right)}{\frac{2\left(a+b+c\right)^3}{27}}=\frac{27}{2\left(a+b+c\right)^2}\)
Em làm thế này đúng không ta:3
Cho a,b,c khác 0 và cho x,y,z tùy ý. Chứng minh rằng: \(\frac{bc\left(a-x\right)\left(a-y\right)\left(a-z\right)}{\left(a-b\right)\left(a-c\right)}+\frac{ca\left(b-x\right)\left(b-y\right)\left(b-z\right)}{\left(b-c\right)\left(b-a\right)}+\frac{ab\left(c-x\right)\left(c-y\right)\left(c-z\right)}{\left(c-a\right)\left(c-b\right)}=abc-xyz\)
Cho ba số thực a, b, c. Chứng minh rằng:\(\left(a^2-bc\right)^3+\left(b^2-ca\right)^3+\left(c^2-ab\right)^3\ge3\left(a^2-bc\right)\left(b^2-ca\right)\left(c^2-ab\right)\)
Đặt \(\left\{{}\begin{matrix}a^2-bc=x\\b^2-ca=y\\c^2-ab=z\end{matrix}\right.\)
\(\Rightarrow x+y+z\ge0\)
\(\)Đẳng thức cần c/m trở thành: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)
Áp dụng Bất đẳng thức AM-GM cho 3 số x,y,z, ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3.y^3.z^3}=3xyz\)
=> Đẳng thức (1) luôn đúng với mọi x
Dấu = xảy ra khi: x=y=z hay \(a^2-bc=b^2-ca=c^2-ab\)
và \(a^2+b^2+c^2-\left(ab+bc+ca\right)=0\)\(\Rightarrow a=b=c\)
Cho a , b , c > 0 . Chứng minh rằng :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}+\frac{7}{16}\cdot\frac{max\left\{\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\right\}}{ab+bc+ca}\)
Cho a,b,c>0. Chứng minh rằng:
\(\frac{a^6}{b^3\left(c+a\right)}+\frac{b^6}{c^3\left(a+b\right)}+\frac{c^6}{a^3\left(b+c\right)}\ge\frac{ab+bc+ca}{2}\)
Cho các số thực dương a, b, c. Chứng minh rằng:
\(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)^2}\ge\frac{54\left(abc\right)^3}{\left(a+b+c\right)^2\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}}\)
\(\Leftrightarrow\left(\Sigma a\right)^4\left(\Sigma a^4b^4\right)\left[\Sigma c^2\left(a^2+b^2\right)^2\right]\ge54^2\left(abc\right)^6\)
Giả sử \(c=\text{min}\left\{a,b,c\right\}\)và đặt \(a=c+u,b=c+v\) thì nhận được một BĐT hiển nhiên :P
Theo BĐT AM-GM ta có:
\(c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)\ge3\sqrt[3]{\left(abc\right)^2\left[\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\right]^2}\)
\(\ge3\sqrt[3]{\left(abc\right)^264\left(abc\right)^4}=12\left(abc\right)^2\)
=> \(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(a^2+c^2\right)^2}\ge2\sqrt{3}abc\)
Cũng theo BĐT AM-GM \(\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4\ge3\sqrt[3]{\left(ab\right)^4\left(bc\right)^4\left(ca\right)^4}=3\left(abc\right)^2\sqrt[3]{\left(abc\right)^2}\)
=> \(\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}\ge\sqrt{3}\cdot abc\sqrt[3]{abc}\)và \(\left(a+b+c\right)^2\ge9\sqrt[3]{\left(abc\right)^2}\)
=> \(\sqrt{c^2\left(a^2+b^2\right)^2+a^2\left(b^2+c^2\right)^2+b^2\left(c^2+a^2\right)^2}\cdot\left(a+b+c\right)^2\cdot\sqrt{\left(ab\right)^4+\left(bc\right)^4+\left(ca\right)^4}\)
\(\ge2\sqrt{3}\left(abc\right)\cdot\sqrt{3}\left(abc\right)\sqrt[3]{abc}\cdot9\sqrt[3]{\left(abc\right)^2}\ge54\left(abc\right)^3\)
Dấu "=" xảy ra <=> a=b=c
\(\hept{\begin{cases}54&A,B,C^2&\end{cases}}\)\(\sqrt[54]{454}.A.B.C\)\(\sqrt{AB^4+BC^4+CA^4}\)\(\Rightarrow AB=CA=BC^4\)nên ta sẽ lại là 54abc3
vậy suy ra \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) ta =\(\notin54\) chả việc gì dài dòng cả
Cho a,b,c>0 thỏa mãn \(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge\left(abc\right)^2\)
Chứng minh rằng \(\frac{\left(ab\right)^2}{\left(a^2+b^2\right)c^3}+\frac{\left(bc\right)^2}{\left(b^2+c^2\right)a^3}+\frac{\left(ac\right)^2}{\left(a^2+c^2\right)b^3}\ge\frac{\sqrt{3}}{2}\)