Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần thị hương
Xem chi tiết
Le Tuan Anh
Xem chi tiết
Rin Huỳnh
27 tháng 12 2023 lúc 20:44

Đặt \(f\left(x\right)=ax^2+bx+c\).

\(f\left(0\right)=c;f\left(1\right)=a+b+c\)

Do \(a+b+2c=0\) nên c và \(a+b+c\) trái dấu. Suy ra f(0)f(1) < 0 nên f(x) = 0 luôn có ít nhất 1 nghiệm tren (0; 1).

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 5 2018 lúc 11:16

dia fic
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 1 2021 lúc 11:33

\(Q=\dfrac{2-\dfrac{c}{a}-\dfrac{2b}{a}+\left(\dfrac{b}{a}\right)\left(\dfrac{c}{a}\right)}{1-\dfrac{b}{a}+\dfrac{c}{a}}=\dfrac{2-mn+2\left(m+n\right)-mn\left(m+n\right)}{1+m+n+mn}\)

\(Q=\dfrac{\left(2-mn\right)\left(m+n+1\right)}{\left(m+1\right)\left(n+1\right)}\ge\dfrac{\left[8-\left(m+n\right)^2\right]\left(m+n+1\right)}{\left(m+n+2\right)^2}\)

Đặt \(m+n=t\Rightarrow0\le t\le2\)

\(Q\ge\dfrac{\left(8-t^2\right)\left(t+1\right)}{\left(t+2\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{\left(2-t\right)\left(4t^2+15t+10\right)}{4\left(t+2\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(t=2\) hay \(m=n=1\)

Bao Nguyen Trong
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 3 2017 lúc 8:56

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 1 2018 lúc 11:06

Đáp án B

Vâng Em Ngốc
Xem chi tiết
Cao Thị Ngọc Hằng
19 tháng 4 2017 lúc 16:47

bn ngốc à,nếu vậy thì k cho mk đi

D.S Gaming
Xem chi tiết
D.S Gaming
Xem chi tiết