tìm các cặp số nguyên x,y thỏa mãn x^3-6x^2+12x=y^3+27
Tìm cặp số nguyên x,y thỏa mãn x(x2-6x +12)=y3+27
ta có :
\(x^3-6x^2+12x-8-y^3=19\Leftrightarrow\left(x-2\right)^3-y^3=19\)
\(\Leftrightarrow\left(x-2-y\right)\left[\left(x-2\right)^2+y\left(x-2\right)+y^2\right]=19\)
vì \(\left(x-2\right)^2+y\left(x-2\right)+y^2\ge0\) và là ước của 19 nên ta có :
\(\hept{\begin{cases}x-2-y=1\\\left(x+2\right)^2+y\left(x+2\right)+y^2=19\end{cases}\Leftrightarrow x-2=y+1\Rightarrow\left(y+1\right)^2+y\left(y+1\right)+y^2=19}\)
\(\Leftrightarrow3y^2+3y-18=0\Leftrightarrow\orbr{\begin{cases}y=2\Rightarrow x=5\\y=-3\Rightarrow x=0\end{cases}}\)
hoặc \(\hept{\begin{cases}x-2-y=19\\\left(x+2\right)^2+y\left(x+2\right)+y^2=1\end{cases}\Leftrightarrow x-2=y+19\Rightarrow\left(y+19\right)^2+y\left(y+19\right)+y^2=19}\)
vô nghiệm .
Vậy \(\orbr{\begin{cases}y=2\Rightarrow x=5\\y=-3\Rightarrow x=0\end{cases}}\)
tìm các cặp số (x,y) nguyên thỏa mãn 9x^2 + 6x=y^3
Tìm các cặp số nguyên x, y thỏa mãn : -3xy + 4y - 6x =27
Câu hỏi của kalista - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo!
-3xy+4y-6x=27
-3xy+4y-(6x+8)=19
y(4-3x)-2(4-3x)=19
(y-2)(4-3x)=19
Vì y;x là số nguyên => y-2;4-3x là số nguyên
=> y-2;4-3x ∈ Ư(19)
Ta có bảng:
y-2 | 1 | 19 | -1 | -19 |
4-3x | 19 | 1 | -19 | -1 |
x | 3 | 21 | 1 | -17 |
y | -5 | 1 | 11 | 5/3 (loại) |
Vậy cặp số nguyên (y;x) thỏa mãn là: (3;-5) ; (21;1) ; (1;11) .
Tìm các cặp số nguyên x;y thỏa mãn:
-3xy+4y-6x=27
ta có:
−3xy+4y−6x−27=0
⇒−3xy+4y−(6x+8)=19
⇒y(4−3x)−2(4−3x)=19
⇒(y−2)(4−3x)=19,y∈Z⇒y−2,4−3x∈Ư(19)
ta có bảng:
y-2 | 1 | -1 | 19 | -19 |
y | 3 | 1 | 21 | -17 |
4-3x | 19 | -19 | 1 | -1 |
x | -5 | \(\notin Z\) | 1 | \(\notin Z\) |
vậy...
học tốt
Tìm các cặp số nguyên dương (x; y) thỏa mãn: 2xy - 6x = 17+5(y-3)
Tìm các cặp số nguyên (x;y) thỏa mãn: y^2=3-2|2x+3|
Ta có \(y^2=3-2\left|2x+3\right|\ge0\Leftrightarrow0\le\left|2x+3\right|\le\dfrac{3}{2}\)
Mà \(x,y\in Z\Leftrightarrow\left|2x+3\right|\in\left\{0;1\right\}\)
Với \(\left|2x+3\right|=0\Leftrightarrow x=-\dfrac{3}{2}\left(loại\right)\)
Với \(\left|2x+3\right|=1\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\Leftrightarrow y^2=1\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
Vậy PT có nghiệm \(\left(x;y\right)\) là \(\left(-1;1\right);\left(-1;-1\right);\left(-2;1\right);\left(-2;-1\right)\)
Tìm các cặp số nguyên \(\left(x;y\right)\) thỏa mãn: \(x^2+x+3=y^2\)
Nếu \(x< -3\) thì \(x^2+x+3< x^2\) và \(x^2+x+3>\left(x+1\right)^2\), vô lý.
Nếu \(x>2\) thì \(x^2+x+3>x^2\) và \(x^2+x+3< \left(x+1\right)^2\), cũng vô lý.
Do đó \(x\in\left\{-3;-2;-1;0;1;2\right\}\)
Thử từng giá trị, ta thấy \(\left(x;y\right)\in\left\{\left(-3;3\right);\left(-3;-3\right)\right\}\) là các cặp số thỏa ycbt.
Tìm các cặp số nguyên (x;y) thỏa mãn y(x + 3) - 5x - 15 = 2
\(y\left(x+3\right)-5x-15=2\\ \Rightarrow y\left(x+3\right)-\left(5x+15\right)=2\\ \Rightarrow y\left(x+3\right)-5\left(x+3\right)=2\\ \Rightarrow\left(y-5\right)\left(x+3\right)=2\)
Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}y-5,x+3\in Z\\y-5,x+3\inƯ\left(2\right)\end{matrix}\right.\)
Ta có bảng:
x+3 | 1 | 2 | -1 | -2 |
y-5 | 2 | 1 | -2 | -1 |
x | -2 | -1 | -4 | -5 |
y | 7 | 6 | 3 | 4 |
Vậy \(\left(x,y\right)\in\left\{\left(-2;7\right);\left(-1;6\right);\left(-4;3\right);\left(-5;4\right)\right\}\)
=>y.(x+3)-5(x+3)=2
=>(y-5).(x+3)=2
x+3 | 1 | -1 | 2 | -2 |
y-5 | 1 | -1 | 2 | -2 |
x | -2 | -1 | -4 | -5 |
y | 7 | 6 | 3 | 4 |
Tìm các cặp số nguyên dương (x; y) thỏa mãn 6x + 5y +18 = 2xy
\(\Leftrightarrow2xy-6x-5y=18\)
\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)
\(\Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)
Phương trình ước số cơ bản