Giải phương trình :(y-4,5)4 + (y-5,5)4 -1 =0
giải giúp mình đang cần gấp!!!!!!!!!nha!!!!!!!!!!!
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
help me! giải khẩn giúp mình nha
a) Tìm giá trị nhỏ nhất của biểu thức:
M=x2+y2-xy-x+y+1
b) Giải phương trình: (y-4,5)4+(y-5,5)4-1=0
giải phương trình (y-4,5)4+(y-5,5)4-1=0
\(y=\frac{9}{2}\)
\(y=\frac{11}{2}\)
\(y=-\frac{\sqrt{7}i-10}{2}\)
\(y=\frac{\sqrt{7i}-10}{2}\)
Giải phương trình \(\left(y-4,4\right)^4+\left(y-5,5\right)^5-1=0\)
Nhanh nha. Mik cần gấp
giải phương trình \(\left(y-4,5\right)^4+\left(y-5,5\right)^4-1=\)0
GIẢI PHƯƠNG TRÌNH:
\(\left(Y-4,5\right)^4+\left(Y-5,5\right)^5-1=0\)
Giúp mk giải bài này vs @@ . Ai giải chi tiết mk sẽ tick cho <3 <3
GIẢI HỆ PHƯƠNG TRÌNH ( Mình không gõ được hệ phương trình nên trong một câu mình để hai phương trình, các bạn tự hiểu là hệ phương trình )
1,
( 1 / x + y ) + ( 1 / x - y ) = 5 / 8
( 1 / x + y ) - ( 1 / x - y ) = - 3 / 8
2,
( 4 / 2x - 3y ) + ( 5 / 3x + y ) = - 2
( 3 / 3x + y ) - ( 5 / 2x + 3y ) = 21
MÌNH ĐANG CẦN GẤP GIÚP MÌNH NHÉ MÌNH SẼ TICK NHANH CHO BẠN NÀO GIẢI ĐẦY ĐỦ VÀ NHANH 😭😭😭
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\end{matrix}\right.\)
Mình đang cần gấp lắm, các bạn giúp mình với. Cảm ơn!
\(\left\{{}\begin{matrix}2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)=\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\left(1\right)\\16x^5-20x^3+5\sqrt{xy}=\sqrt{\dfrac{y+1}{2}}\left(2\right)\end{matrix}\right.\).
ĐKXĐ: \(xy>0;y\ge-\dfrac{1}{2}\).
Nhận thấy nếu x < 0 thì y < 0. Suy ra VT của (1) âm, còn VP của (1) dương (vô lí)
Do đó x > 0 nên y > 0.
Với a, b > 0 ta có bất đẳng thức \(\left(a+b\right)^4\le8\left(a^4+b^4\right)\).
Thật vậy, áp dụng bất đẳng thức Cauchy - Schwarz ta có:
\(\left(a+b\right)^4\le\left[2\left(a^2+b^2\right)\right]^2=4\left(a^2+b^2\right)^2\le8\left(a^4+b^4\right)\).
Dấu "=" xảy ra khi và chỉ khi a = b.
Áp dụng bất đẳng thức trên ta có:
\(\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^4\le8\left[8\left(x^4+y^4\right)+16x^2y^2\right]=64\left(x^2+y^2\right)^2\)
\(\Rightarrow\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\le8\left(x^2+y^2\right)\). (3)
Lại có \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2=4\left(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\right)\). (4)
Áp dụng bất đẳng thức AM - GM ta có \(\dfrac{x^6}{y^4}+xy+xy+xy+xy\ge5x^2;\dfrac{y^6}{x^4}+xy+xy+xy+xy\ge5y^2;3\left(x^2+y^2\right)\ge6xy\).
Cộng vế với vế của các bđt trên lại rồi tút gọn ta được \(\dfrac{x^6}{y^4}+2xy+\dfrac{y^6}{x^4}\ge2\left(x^2+y^2\right)\). (5)
Từ (3), (4), (5) suy ra \(4\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)^2\ge\left(\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\right)^2\Rightarrow2\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}\right)\ge\sqrt[4]{8\left(x^4+y^4\right)}+2\sqrt{xy}\).
Do đó đẳng thức ở (1) xảy ra nên ta phải có x = y.
Thay x = y vào (2) ta được:
\(16x^5-20x^3+5x=\sqrt{\dfrac{x+1}{2}}\). (ĐK: \(x>0\))
PT này có một nghiệm là x = 1 mà sau đó không biết giải ntn :v
giải các phương trình sau
a) x^2 + 1/x^2-4,5(x+1/x)+7=0
b) x^4+5x^3-12x^2+5x+1=0
c) x^4-21x^3+74x^2-105x+50=0
giúp mình nhé mình cần gấp lắm