Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
gffhgfv
Xem chi tiết
Nguyễn Phan Quỳnh Hương
Xem chi tiết
pokemon2005
24 tháng 8 2015 lúc 20:55

số đó là 7744

ai **** cko mink mink **** lại cko

Seohuyn
4 tháng 6 2017 lúc 16:00

Số đó là: 7744

dao thi thanh huyen
Xem chi tiết
Nguyễn Hữu Triết
6 tháng 11 2016 lúc 8:45

Giả sử aabb=n2

=> a . 103+a.102+b.10+b = n2

=> 11(100a+b)=n2

=> n2 chia hết cho 11

=> n chia hết cho 11

Do n2 có 4 chữ số nên

32<n<100

=> n = 33; n = 44; n = 55; n = 99

thử vào thì n = 88 là thỏa mãn

Vậy số đó là 7744

Lê Duy Quang
Xem chi tiết
luu thanh huyen
Xem chi tiết
Lê Thị Bích Tuyền
4 tháng 11 2015 lúc 18:48

Cách 1 : Gọi số chính phương phải tìm là . n\(^2\)= aabb gạch ngang trên đầu (a,b \(\in N\)\(\le a\le9,0\le b\le9\) )

Ta có  \(n^2\)= aabb gạch ngang trên đầu = 1100a + 11b = 11.(100a + b) = 11 .(99a + a + b)  (1).

Do đó 99a + a + b chia hết cho 11 nên a + b chia hết cho 11, vậy a + b = 11

Thay a +b = 11 vào (1) được \(n^2\)= 11.(99a + 11) = 11\(^2\)= (9a + 1). Do đó 9a + 1 phải là số chính phương.

Thử với a = 1,2,3,4,5,6,7,8,9 chỉ có a = 7 cho 9a + 1 = 8\(^2\) là số chính phương.

Vậy a = 7
( còn lại pạn tự làm )
Cách 2
Giả sử aabb = n\(^2\)
\(\Leftrightarrow\)a.10\(^3\) + a.10\(^2\)+ b.10 + b = n\(^2\)
\(\Leftrightarrow\)11(100a + b) = n\(^2\)
\(\Rightarrow\)n\(^2\) chia hết cho 11
\(\Rightarrow\)n chia hết cho 11
Do n\(^2\)có 4 chữ số nên 32 < n < 100
\(\Rightarrow\)n = 33,n = 44,n = 55,...n = 99
Thử vào thì n = 88 là thỏa mãn
Vậy số đó là 7744

Thanh Hiền
4 tháng 11 2015 lúc 18:25

Bạn vào câu hỏi tương tự nha !!!

Dương Trung Kiên
4 tháng 11 2015 lúc 18:26

Sorry bạn.Mình không biết làm.

Bạn vào câu hỏi tương tự đó

Thanh Tùng DZ
Xem chi tiết
Thắng Nguyễn
28 tháng 11 2016 lúc 21:12

Câu hỏi của Hatsune Miku - Toán lớp 6 - Học toán với OnlineMath

Nguyễn Thị Lan Hương
28 tháng 11 2016 lúc 21:13

Giả sử aabb = n2

<=> a . 103 + a . 102 + b . 10 + b = n2

<=> 11( 100a + b ) = n2

=> n2 chia hết cho 11

=> n chia hết cho 11

Do n2 có 4 chữ số nên 

32 < n < 100

=> n = 33 , n = 44 , n = 55 , .......n = 99

Thử vào thì n = 88 là thỏa mãn

Vậy số đó là 7744

Jonhs Nam Nguyễn
29 tháng 11 2016 lúc 16:33

Nguyễn Thị Lan Hương copy trên mạng

Giả sử aabb = n2

<=> a . 103 + a . 102 + b . 10 + b = n2

<=> 11( 100a + b ) = n2

=> n2 chia hết cho 11

=> n chia hết cho 11

Do n2 có 4 chữ số nên 

32 < n < 100

=> n = 33 , n = 44 , n = 55 , .......n = 99

Thử vào thì n = 88 là thỏa mãn

Vậy số đó là 7744

Kirigaya Kazuto
Xem chi tiết
Yuuki Asuna
18 tháng 11 2016 lúc 19:19

Gọi số chính phương đó là aabb

Ta có : \(aabb=n^2\)

\(aabb=1000a+100a+10b+b\)

\(=11\left(100a+b\right)=n^2\)

\(=11\left(99a+a+b\right)=n^2\left(1\right)\)

Do aabb chia hết cho 11 nên a + b chia hết cho 11

=> a + b = 11 \(\left(2\right)\)

Thay \(\left(2\right)\) vào \(\left(1\right)\) ta có :

\(n^2=11^2\left(9a+1\right)\)

=>\(9a+1\) là số chính phương

Thử a = 1 ; 2 ; 3 ; ... ; 9 ta thấy chỉ có 7 thỏa mãn

=> a = 7 => b = 4

Vậy số cần tìm là 7744

Đỗ Nguyễn Đức Trung
Xem chi tiết
NGUYEN MANH QUAN
5 tháng 2 2017 lúc 9:22

88^2=7744

Đỗ Nguyễn Đức Trung
5 tháng 2 2017 lúc 9:23

Số đó bằng 7744

Cure Beauty
5 tháng 2 2017 lúc 9:26

giả sử aabb = n2

<=> a . \(10^3\)+ a \(.10^2\) + b .10 + b = n2

<=>11 ( 100a + b ) = n2

<=> n2 chia hết cho 11

=> n chia hết cho 11

do n2 cho 4 chữ số nên

32 <  n < 100

=> n = 33 , n = 44 ; n = 55; ....n ; 99

Thử vào thì n = 88 là thõa mãn

Vậy số đó là 7744

Quốc Việt Bùi Đoàn
Xem chi tiết
ngô thị thanh lam
2 tháng 4 2016 lúc 6:12

+giả sử aabb=n^2 
<=>a.10^3+a.10^2+b.10+b=n^2 
<=>11(100a+b)=n^2 
=>n^2 chia hết cho 11 
=>n chia hết cho 11 
do n^2 có 4 chữ số nên 
32<n<100 
=>n=33,n=44,n=55,...n=99 
thử vào thì n=88 là thỏa mãn 
vậy số đó là 7744