△ABC có AB= AC và ria phân giác của góc A cắt BC ở H
a )Chứng minh AH vuông góc với BC
c)Vẽ HD vuông hóc với AB và HE vuông góc với AC
Chứng minh DE// BC
Cho tam giác ABC cân tại A góc A nhọn AB > Bc Kẽ AH vuông góc với BC tại Ha)Chứng minh tam giác AHB = tam giác AHC
b) Qua H kẽ HD vuông góc AB tại D và HE vuông góc AC tại E . Tia DH cắt tia AC ở F
Chứng minh: HC là tia phân giác của EHF
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
b) Xét ΔDHB vuông tại D và ΔEHC vuông tại E có
HB=HC(ΔAHB=ΔAHC)
\(\widehat{DBH}=\widehat{ECH}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDHB=ΔEHC(cạnh huyền-góc nhọn)
nên \(\widehat{DHB}=\widehat{EHC}\)(hai góc tương ứng)
mà \(\widehat{DHB}=\widehat{FHC}\)(hai góc đối đỉnh)
nên \(\widehat{EHC}=\widehat{FHC}\)
mà tia HC nằm giữa hai tia HE,HF
nên HC là tia phân giác của \(\widehat{EHF}\)(đpcm)
Bài 1: Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lất điểm D sao cho BD = BA. Kẻ Ah vuông góc với BC, kẻ DK vuông góc với AC.
a) Chứng minh: góc BAD = góc BDA
b) Chứng minh: AD là phân giác của góc HAC
c) Chứng minh: AK = AH
d) Chứng minh: AB + AC < BC + AH
Bài 2: Cho tam giác cân ABC có AB = AC = 5 cm, BC = 8 cm. Kẻ Ah vuông góc với BC ( H thuộc BC )
a) Chứng minh: HB = HC và góc CAH = góc BAH
b) AH = ?
c) Kẻ HD vuông góc với AB ( D thuộc AB ), kẻ HE vuông góc với AC ( E thuộc AC ). Chứng minh: DE song song BC
Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM .
a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC
b) Chứng minh AM=AN
c) Chứng minh AI vuông góc với BC
Bài 2 : Cho tam giác vuông tại A có góc C=30 độ
a) Tính góc B
b) Vẽ tia phân giác của góc B cắt AC tại D
c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD
D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD
Tính góc AKB
Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC
a) Chứng minh tam giác AKB=tam giác AKC
b) Chứng minh AK vuông góc với BC
c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
Bài 1:
a)+ Vì AB = ACNÊN
==>Tam giác ABC cân tại A
==>góc ABI = góc ACI
+ Xét tam giác ABI và tam giác ACI có:
AI là cạch chung
AB = AC(gt)
BI = IC ( I là trung điểm của BC)
Vậy tam giác ABI = tam giác ACI (c.c.c)
==> góc BAI = góc CAI ( 2 góc tương ứng )
==>AI là tia phân giác của góc BAC
b)
Xét tam giác BAM và tam giác BAN có:
AB = AC (gt)
góc B = góc C (cmt)
BM = CN ( gt )
Vậy tam giác BAM = tam giác CAN (c.g.c)
==> AM = AN (2 cạnh tương ứng)
c)
vì tam giác BAI = tam giác CAI (cmt)
==>góc AIB = góc AIC (2 góc tương ứng)
Mà góc AIB+ góc AIC = 180độ ( kề bù)
nên AIB=AIC=180:2=90
==>AI vuông góc với BC
Cho ABC vuông ở C, có góc A bằng 600. Tia phân giác của góc BAC cắt
BC ở E. Kẻ EK vuông góc với AB (K thuộc AB).
a) Chứng minh AC =AK và AE CK
b) Chứng minh KA = KB.
c) Chứng minh EB > AC.
d) Kẻ BD vuông góc với tia AE (D thuộc tia AE). Chứng minh ba đường thẳng AC, BD, KE cùng đi qua 1 điểm.
a) Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)(AE là tia phân giác của \(\widehat{CAK}\))
Do đó: ΔACE=ΔAKE(cạnh huyền-góc nhọn)
Suy ra: AC=AK(hai cạnh tương ứng)
Cho ABC vuông ở C, có góc A bằng 600. Tia phân giác của góc BAC cắt
BC ở E. Kẻ EK vuông góc với AB (K thuộc AB).
a) Chứng minh AC =AK và AE CK
b) Chứng minh KA = KB.
c) Chứng minh EB > AC.
d) Kẻ BD vuông góc với tia AE (D thuộc tia AE). Chứng minh ba đường thẳng AC, BD, KE cùng đi qua 1 điểm.
Xét tam giác vuông ACE và tam giác vuông AKE có : góc ECA = góc EKA = 90 độEA: cạnh huyền chung góc CAE = góc KAE (vì AE là tia phân giác góc A)Suy ra : Tam giác ACE= Tam giác AKE ( CH-GN)
=> AC=AK( hai cạnh tương ứng)ta có: AC=AK (cmt)=> A nằm trên đường trung trực của KC (1)AK=EC( tam giác AKE=tam giác ACE)=> E nằm trên đường trung trực của KC (2)
từ (1) và (2) suy ra AE là đường trung trực của KCvậy AE vuông góc với CKb) Ta có : trong tam giác vuông BCA: góc B + góc A = 90 độ
=> góc B = 90 độ - góc A= 90 độ - 60 độ = 30 độ Mà góc EAB = 30 độ Suy ra Tam giác EBA cân tại E
Mặt khác : EK vuông góc với AB
Nên EK cũng là đường trung trực của tam giác AEB=>BK=AKc) Trong tam giác vuông BEK ta có : EB > BK Mà BK=KA ; KA=AC=> BK=AC Hay EB>ACd) Ta có : ba đường cao BD;EK;CA luôn đồng quy tại một điểm theo tính chấtnên ba đường thẳng AC;BD;KE cùng đi qua 1 điểm
Cho ABC vuông ở C, có góc A bằng 600. Tia phân giác của góc BAC cắt BC ở E.Kẻ EK vuông góc với AB ( K thuộc AB). Chứng minh AC =AK và AE CK Chứng minh KA = KB. Chứng minh EB > AC. Kẻ BD vuông góc với tia AE( D thuộc tia AE). Chứng minh ba đường thẳng AC, BD, KE cùng đi qua 1 điểm.
Cho tam giác ABC có góc A= 90 độ. Kẻ AH vuông góc với BC( H\(\in\)BC). Các tia phân giác của các góc BAH và C cắt nhau ở K. Chứng minh rằng: AK vuông góc với CK
Cho tam giác vuông cân ABC (AB=AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH=KC
a, △ABE=△ACD (g.c.g) vì AB=AC;A^ chung; ABE^=ACD^=4502
⇒BE=CD;AE=AD;AEB^=ADC^
b, △BDI=△CEI (g.c.g) vì BD=EC(=AB−AD);BDI^=IEC^(=1800−BEA^);ABE^=ACD^=4502
⇒ID=IE
△ADI=△AEI (c.g.c) vì AD=AE;ADC^=AEB^;ID=IE
⇒DAI^=EAI^=9002=450
△AMC có CAM^=MCA^=450⇒△AMC vuông cân tại M.
Chứng minh tương tự có △AMB vuông cân tại M.
c, Gọi F là giao điểm của BE và AK.
△BAF=△BKF (g.c.g) vì BFA^=BFK^=900;BF chung ABF^=KBF^=4502
⇒AB=BK
Chứng minh tương tự có ⇒BD=BH ⇒HK=AD(1)
△ABE=△KBE (c.g.c) vì AB=BK;ABE^=KBE^=4502;BE chung.
⇒AE=EK;BKE^=BAE^=900
⇒EK⊥BC hay △EKC vuông cân tại K⇒KC=KE=AE=AD(2)
Từ (1) và (2) ⇒HK=CK
Cho △ABC vuông tại a (AB<AC) có đường cao AH (H ϵ BC).Kẻ HD vuông góc với AB tại D và HE vuông góc với AC tại E.
a)Chứng minh:tứ giác ADHE là hình chữ nhật
b)Gọi F là điểm đối xứng của H qua D .Chứng minh tứ giác AEDF là hình bình hành.
c)Gọi K là giao điểm của FA và HE.Chứng minh tứ giác ADEK là hình bình hành từ đó suy ra E là trung điểm HK.
d)Đường thẳng qua H và song song với DE cắt AC tại M.Chứng minh tứ giác AHMK là hình thoi
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: ADHE là hình chữ nhật
=>HD//AE và HD=AE
Ta có: HD//AE
D\(\in\)HF
Do đó: DF//AE
Ta có; HD=AE
HD=DF
Do đó: AE=DF
Xét tứ giác AEDF có
AE//DF
AE=DF
Do đó: AEDF là hình bình hành
c: Ta có: AEDF là hình bình hành
=>AF//DE
mà A\(\in\)KF
nên KA//ED
Ta có: EH//AD
E\(\in\)KH
Do đó: KE//AD
Xét tứ giác ADEK có
AD//EK
AK//DE
Do đó: ADEK là hình bình hành
=>AK=DE
mà DE=AF(AEDF là hình bình hành)
nên AF=AK
mà K,A,F thẳng hàng
nên A là trung điểm của KF
d: Xét tứ giác DHME có
DH//ME
DE//MH
Do đó: DHME là hình bình hành
=>DH=EM
mà DH=EA
nên EM=EA
=>E là trung điểm của AM
Xét tứ giác AHMK có
E là trung điểm chung của AM và HK
=>AHMK là hình bình hành
Hình bình hành AHMK có AM\(\perp\)HK
nên AHMK là hình thoi