Chứng minh tứ giác ABCD có AB=BC=CD=DA là hình bình hành
cho tứ giác ABCD có M , N , P , Q lần lượt là trung điểm của AB , BC , CD , DA . Chứng minh tứ giác MNPQ là hình bình hành , IMPN là hình bình hành
Xét tam giác ABC có:
M là trung điểm AB
N là trung điểm BC
=> MN là đường trung bình
=> MN//AC và \(MN=\dfrac{1}{2}AC\left(1\right)\)
Xét tam giác ADC có:
P là trung điểm DC
Q là trung điểm AD
=> PQ là đường trung bình
=> PQ//AC và \(PQ=\dfrac{1}{2}AC\left(2\right)\)
\(\left(1\right),\left(2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}PQ//MN\\PQ=MN\end{matrix}\right.\)
=> MNPQ là hình bình hành
Phần còn lại thì điểm I đâu?
cho tứ giác abcd gọi m ,n,p,q lần lượt là trung điểm của ab,bc,cd và da chứng minh tứ giác mnpq là hình bình hành
Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
cho hình bình hành ABCD .Gọi M,N,P,Q lần lượt của AB ,BC , CD,DA
a, Chứng minh tứ giác AMCP là hình bình hành
b, Chứng minh tứ giác MNPQ là hình bình hành
M, N, P, Q lần lượt là cái gì của 4 đoạn thẳng vậy???
Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA của tứ giác ABCD.
a) Chứng minh tứ giác MNPQ là hình bình hành.
b) Tìm điều kiện của tứ giác ABCD để tứ giác MNPQ là hình chữ nhật
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
Cho tứ giác ABCD . Gọi M, N, E, F theo thứ tự trung điểm AB, BC, CD, DA . Chứng minh rằng :MNEF là hình bình hành
Xét tam giác ABC có:
M là trung điểm AB
N là trung điểm BC
=> MN là đường trung bình
=> MN//AC và \(MN=\dfrac{1}{2}AC\)(1)
Xét tam giác ADC có:
F là trung điểm AD
E là trung điểm DC
=> EF là đường trung bình
=> EF//AC và \(EF=\dfrac{1}{2}AC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrowđpcm\)
Cho tứ giác abcd có e,f,g,h lần lượt là trung điểm ab bc cd và da a, chứng minh EFGH là hình bình hành
b, nếu AC=BD=6cm thì tứ giác EFGH là hình gì và tính chu vi của hình
a: Xét ΔABC có
E,F lần lượt là trung điểm của BA,BC
=>EF là đường trung bình của ΔABC
=>EF//AC và \(EF=\dfrac{AC}{2}\)
Xét ΔCDA có
G,H lần lượt là trung điểm của CD,DA
=>GH là đường trung bình của ΔCDA
=>GH//AC và \(GH=\dfrac{AC}{2}\)
Ta có: EF//AC
GH//AC
Do đó: EF//GH
Ta có: \(EF=\dfrac{AC}{2}\)
\(GH=\dfrac{AC}{2}\)
Do đó: EF=GH
Xét tứ giác EFGH có
EF//GH
EF=GH
Do đó: EFGH là hình bình hành
b: Xét ΔBAD có
E,H lần lượt là trung điểm của AB,AD
=>EH là đường trung bình của ΔBAD
=>\(EH=\dfrac{BD}{2}\)
mà BD=AC
và EF=AC/2
nên EH=EF
Hình bình hành EFGH có EF=EH
nên EFGH là hình thoi
=>Chu vi hình thoi EFGH là: \(4\cdot EF=4\cdot\dfrac{AC}{2}=2\cdot AC=12\left(cm\right)\)
Cho tứ giác ABCD có M,N,P,Q,E,F lần lượt là trung điểm của AB,BC,CD,DA,AC,BD. Chứng minh
a)MNPQ là hình bình hành b)NEQF là hình bình hành
Cho tứ giác ABCD có E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. a) Chứng minh tứ giác EFGH là hình bình hành. b) Cho AC= 6cm; BD=8cm. Tính độ dài các cạnh của hình bình hành EFGH. 2 Giải giúp mình với
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của BC
Do đó: EF là đường trung bình
=>EF//AC và EF=AC/2(1)
Xét ΔCDA có
G là trung điểm của CD
H là trung điểm của DA
Do đó: GH là đường trung bình
=>GH//AC và GH=AC/2(2)
Từ (1) và (2) suy ra EF//GH và EF=GH
hay EFGH là hình bình hành
b: EF=GH=AC/2=3(cm)
FG=EH=BD/2=4(cm)
a: Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD và MQ=BD/2
Xét ΔCBD có CP/CD=CN/CB
nên NP//BD và NP=BD/2
=>MQ//NP và MQ=NP
=>MNPQ là hình bình hành
b: KHi ABCD là hình thoi thì AC vuông góc với BD
=>MQ vuông góc với MN
=>MNPQ là hình chữ nhật
c: khi ABCD là hình chữ nhật thì AC=BD
=>MN=MQ
=>MNPQ là hình thoi