Cho y= \(\frac{x+m}{x^2+1}\) (1). Tìm m để mã y=3
cho các số không âm x,y,z thỏa mãn x+y+z=3
tìm mã và min của \(M=\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)
\(M=\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\le\frac{x}{2x}+\frac{y}{2y}+\frac{z}{2z}=\frac{3}{2}\)
Nên max M là \(\frac{3}{2}\) khi x=y=z=1
\(x+y+z=3\ge x,y,z\)\(\Rightarrow M\ge\frac{x}{10}+\frac{y}{10}+\frac{z}{10}=\frac{3}{10}\)
Nên min M là \(\frac{3}{10}\) khi trong x,y,z có 2 số bằng 0 và 1 số bằng 3
1....cho hàm số y=-x3+3x2 -4 (C). Tìm m để đường thẳng d: y=m(x+1) cắt đồ thị (C) tại 3 điểm M(-1;0), B, C sao cho MA=2MB
2....Cho hàm số y=\(\frac{2x}{x+1}\) (C). Tìm 2 điểm thuộc (C) đối xứng qua d: 2x +y - 4 =0
3.... Cho h số y+\(\frac{x^2-2x+2}{x-1}\) (C).Tìm m để đường thẳng d: y= -x +m cắt (C) tại 2 điểm đối xứng nhau qua đường thẳng y = x+3
Trong mặt phẳng tọa độ $O x y$ cho Parabol $(P): y=x^{2}$ và đường thẳng $(d): y=m x+3$ ($m$ là tham số)
a) Tìm tọa độ giao điểm của $(d)$ và $(P)$ khi $m=2$.
b) Tìm $m$ để đường thẳng $(d)$ cắt parabol $(P)$ tại hai điểm phân biệt có hoành độ $x_{1} ; x_{2}$ thỏa mãn $\frac{1}{x_{1}}+\frac{1}{x_{2}}=\frac{3}{2}$.
a) Khi m = 2 thì: \(\hept{\begin{cases}y=x^2\\y=2x+3\end{cases}}\)
Hoành độ giao điểm (P) và (d) là nghiệm của PT: \(x^2=2x+3\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\Rightarrow y=1\\x=3\Rightarrow y=9\end{cases}}\)
Vậy tọa độ giao điểm của (P) và (d) là \(\left(-1;1\right)\) và \(\left(3;9\right)\)
b) Hoành độ giao điểm của (P) và (d) là nghiệm của PT:
\(x^2=mx+3\Leftrightarrow x^2-mx-3=0\)
Vì \(ac=1\cdot\left(-3\right)< 0\) => PT luôn có 2 nghiệm phân biệt
Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-3\end{cases}}\)
Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=\frac{3}{2}\Leftrightarrow\frac{-m}{3}=\frac{3}{2}\Rightarrow m=-\frac{9}{2}\)
Vậy \(m=-\frac{9}{2}\)
cho M=\(\frac{x^2}{\left(x+y\right)\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}-\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)
a ) Rút Gọn M
b ) Tìm x,y\(\in\)Z để M=-7
a)\(M=\frac{x^2}{\left(x+y\right)\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}-\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\left(ĐKXĐ:x\ne-1;y\ne1\right)\)
\(M=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x^2+x^3-y^2+y^3-x^3y^2-x^2y^3}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{\left(x-y\right)\left(x+y\right)-x^2y^2\left(x+y\right)+x^3+y^3}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{\left(x-y\right)\left(x+y\right)-x^2y^2\left(x+y\right)+\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{\left(x+y\right)\left(x-y-x^2y^2+x^2-xy+y^2\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x-y-x^2y^2+x^2-xy+y^2}{\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x-xy+x^2-x^2y^2+y^2-y}{\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x\left(1-y\right)+x^2\left(1-y\right)\left(1+y\right)-y\left(1-y\right)}{\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{\left(1-y\right)\left(x+x^2\left(1+y\right)-y\right)}{\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x\left(x+1\right)+y\left(x-1\right)\left(x+1\right)}{1+x}\)
\(M=x+xy-y\)
b)Ta có:\(x+xy-y=-7\)
\(x\left(y+1\right)-y-1+8=0\)
\(\left(x-1\right)\left(y+1\right)=-8\)
Ta có : -8 = 8 . -1 = -8 . 1 = -2.4=-4.2
Rồi chỗ đó tự thay nha
Đây là bài dài nhất trong olm của mk
1. Cho pt: \(\frac{x+1}{x-m+1}=\frac{x}{x+m+2}\). Tìm k là số giá trị của m để pt vô nghiệm
2. Số nguyệm nguyên (x;y) của phương trình: \(x^3+2x^2+2+3x-y^3=0\)
Cho đường thẳng y=(1-4m)x+m-2
a, Với giá trị nào của đường thẳng y=(1-4m)x+m-2 đi qua gốc tọa độ
b,Tìm m để đường thẳng y=(1-4m)x+m-2 cắt trung trung trực điểm có tung độ bằng \(\frac{3}{2}\)
c,Tìm m để đường thẳng y=(1-4m)x+m-2 cắt trục hoành taijddieemr có hoành độ là \(\frac{1}{2}\)
Cho y=\(\frac{1}{3}mx^3-\left(m-1\right)x^2-3\left(m-2\right)x+\frac{1}{3}\)
a. Tìm m để hàm số đồng biến trên R
b. Tìm m để hàm số nghịch biến trên R
c. Tìm m để hàm số có 2 cực trị
d. Tìm m để hàm số có 2 cực trị x1,x2 sao cho x1+3x2=1
e. Tìm m để hàm số nghịch biến trên đoạn có độ dài bằng 1 (khi m>0)
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
1. Cho biểu thức: A= \(\left(\frac{4\sqrt{y}}{2+\sqrt{y}}+\frac{8y}{4-y}\right):\left(\frac{\sqrt{y}-1}{y-2\sqrt{y}}+\frac{2}{\sqrt{y}}\right)\)
a) rút gọn A
b) tìm y để A =-2
2. cho biểu thức P=\(\frac{x-2}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}+2}\)
a) rút gọn P
b) tìm x ∈ Z để P nhận nguyên
3. cho biểu thức B=\(\left(\frac{x\sqrt{x}+x+\sqrt{x}}{x\sqrt{x}-1}-\frac{\sqrt{x}+3}{1-\sqrt{x}}\right).\frac{x-1}{2x+\sqrt{x}-1}\)
a) rút gọn B
b) tìm x để B<0
Giúp mình làm nhanh với ạk . cần gấp !!!!!
, Cho hàm số y=x-1/x^2+mx+4. Tìm m để đồ thị hàm số có 2 đường tiện cận 13, tìm m để(C):y= mx^3-x^2-2x+8m cắt Ox tại 3 điểm phân biệt có Hoành độ âm 14,cho (C) :y= x^3+(m+2) x+1 d:y= 2x-1 Tìm m để d cắt C tại 1 điểm duy nhất có Hoành độ dương 15, tìm m để phương trình -x^4+2x^2+3x+2m=0 có 3 nghiệm phân biệt
1.Cho x, y ,z là 3 số dương thỏa mãn xy + yz + zx = 3 . CMR:
\(\frac{1}{1+x^2\left(y+z\right)}+\frac{1}{1+y^2\left(z+x\right)}+\frac{1}{1+z^2\left(x+y\right)}\le\frac{1}{xyz}\)
2. Cho biểu thức \(f\left(x\right)=\frac{\left(2-m\right)x^2+2\left(m-2\right)x-3m+1}{-4x^2+12x-10}\)
a. Tìm m để f(x) =0 có 2 nghiệm pb
b. tìm m để f(x) > 0 với mọi x ∈ R