Phân tích các đa thức sau thành nhân tử
ax^2 + bx^2 - bx - ax + cx^2 - cx
Phân tích đa thức thành nhân tử( Nhóm các hạng tử)
a) xy+1-x-y
b) x^2+ab+ac+bx
c)ax+bx-cx+a+b-c
a ) xy + 1 - x - y
= x ( y - 1 ) + 1 - y
= x ( y - 1 ) - ( y - 1 )
= ( x - 1 ) ( y - 1 )
b ) x2 + ab + ac + bx
= ( b + x )x + a( b + c )
= ( b + x )1x + 1a( b + c )
= ( b + x ) ( x + a ) ( b + c )
c ) ax + bx - cx + a + b - c
= ( a + b - c )x + a + b - c
= ( a + b - c )x + ( a + b - c )1
= ( a + b - c ) ( x + 1 )
Phân tích đa thức thành nhân tử : \(A=\left(ax+by+cz\right)^2+\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2\)
Phân tích đa thức thành nhân tử:
a)A=4acx+4bcx+4x+4bx
b)B=ax-bx+cx-3a+3b-3c
c)C=2ax-bx+3cx-2a+b-3c
d)D=ax-bx-2cx-2a+2b+4c
e)E=3ax2+3bx2+ax+bx+5a+5b
f)F=ax2-bx2-2ax+2bx-3a+3b
A = 4acx + 4bcx + 4ax + 4bx ( đã sửa '-' )
= 4x( ac + bc + a + b )
= 4x[ c( a + b ) + ( a + b ) ]
= 4x( a + b )( c + 1 )
B = ax - bx + cx - 3a + 3b - 3c
= x( a - b + c ) - 3( a - b + c )
= ( a - b + c )( x - 3 )
C = 2ax - bx + 3cx - 2a + b - 3c
= x( 2a - b + 3c ) - ( 2a - b + 3c )
= ( 2a - b + 3c )( x - 1 )
D = ax - bx - 2cx - 2a + 2b + 4c
= x( a - b - 2c ) - 2( a - b - 2c )
= ( a - b - 2c )( x - 2 )
E = 3ax2 + 3bx2 + ax + bx + 5a + 5b
= 3x2( a + b ) + x( a + b ) + 5( a + b )
= ( a + b )( 3x2 + x + 5 )
F = ax2 - bx2 - 2ax + 2bx - 3a + 3b
= x2( a - b ) - 2x( a - b ) - 3( a - b )
= ( a - b )( x2 - 2x - 3 )
= ( a - b )( x2 + x - 3x - 3 )
= ( a - b )[ x( x + 1 ) - 3( x + 1 ) ]
= ( a - b )( x + 1 )( x - 3 )
Phân tích thành nhân tử (mọi người làm chi tiết ạ)
\(ax^2 -3axy+bx-3by\)
\(5x^2 y+5xy^2 -a^2 x-a^2 y\)
\(2ax^3 +6ax^2 +6ax+18a\)
\(10xy^2 -5by^2 +2ax-ab\)
\(ax-bx+cx-3a+3b-3c\)
\(ax^2-3axy+bx-3by\\ =x\left(ax+b\right)-3y\left(ax+b\right)\\ =\left(x-3y\right)\left(ax+b\right)\)
\(5x^2y+5xy^2-a^2x-a^2y\\ =5xy\left(x+y\right)-a^2\left(x+y\right)\\ =\left(5xy-a^2\right)\left(x+y\right)\)
\(2ax^3+6ax^2+6ax+18a\\ =2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\)
\(10xy^2-5by^2+2ax-ab\\ =5y^2\left(2x-b\right)+a\left(2x-b\right)\\ =\left(5y^2+a\right)\left(2x-b\right)\)
\(ax-bx+cx-3a+3b-3c\\ =x\left(a-b+c\right)-3\left(a-b+c\right)\\ =\left(x-3\right)\left(a-b+c\right)\)
Bài 2 : Phân tích các đa thức sau thành nhân tử :
a) x2 - ( m + n )x + mn
b) ax + by + a - bx - ay - b
\(a,=x^2-mx-nx+mn=x\left(x-m\right)-n\left(x-m\right)=\left(x-n\right)\left(x-m\right)\\ b,=a\left(x-y\right)-b\left(x-y\right)+\left(a-b\right)\\ =\left(x-y\right)\left(a-b\right)+\left(a-b\right)=\left(a-b\right)\left(x-y+1\right)\)
b: \(=a\left(x-y\right)-b\left(x-y\right)+a-b\)
\(=\left(x-y+1\right)\left(a-b\right)\)
a) \(x^2-\left(m+n\right)x+mn=\left(x^2-n\cdot x\right)-\left(m\cdot x-m\cdot n\right)=x\left(x-n\right)-m\left(x-n\right)=\left(x-m\right)\left(x-n\right)\)
b) \(ax+by+a-bx-ay-b\)
\(=\left(ax-ay+a\right)-\left(bx-by+b\right)\)
\(=a\left(x-y+1\right)-b\left(x-y+1\right)\)
\(\left(a-b\right)\left(x-y+1\right)\)
Phân tích đa thức thành nhân tử
ax2 - ax + bx2 -bx + a + b
ax2 - ax + bx2 -bx + a + b
= (ax2+ bx2 ) - (ax + bx) + (a + b)
=x2 (a + b) - x(a + b) + (a + b)
= (x2 - x + 1)(a + b)
ax2 - ax + bx2 - bx + a + b
= ( ax2 + bx2 ) - ( ax + bx ) + ( a + b )
= x2( a + b ) - x( a + b ) + ( a + b )
= ( a + b )( x2 - x + 1 )
\(ax^2-ax+bx^2-bx+a+b\)
\(=ax\left(x-1\right)+bx\left(x-1\right)+\left(a+b\right)\)
\(=x\left(x-1\right)\left(a+b\right)+\left(a+b\right)\)
\(=\left(a+b\right)\left(x^2-x+1\right)\)
Giả sử x1,x2 là 2 nghiệm phân biệt của đa thức P(x)=ax^2+bx+c trong đó a khác 0,c khác 0.Hãy tìm nghiệm của đa thức Q(x)=cx^2+bx+a theo x1,x2
Giả sử x1,x2 là 2 nghiệm phân biệt của đa thức P(x)=ax^2+bx+c trong đó a khác 0,c khác 0.Hãy tìm nghiệm của đa thức Q(x)=cx^2+bx+a theo x1,x2
Giả sử x1,x2 là 2 nghiệm phân biệt của đa thức P(x)=ax2+bx+c trong đó a khác 0,c khác 0.Hãy tìm nghiệm của đa thức Q(x)=cx2+bx+a theo x1,x2
Phân tích các đa thức sau thành nhân tử
d) x2-ax-bx+ab
e) x2y+xy2-x-y
f) ax2+ay-bx2-by
d)\(x^2-ax-bx+ab=x\left(x-a\right)-b\left(x-a\right)\)
\(=\left(x-b\right)\left(x-a\right)\)
e)\(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(xy-1\right)\left(x+y\right)\)
f)\(ax^2+ay-bx^2-by=a\left(x^2+y\right)-b\left(x^2+y\right)\)
\(=\left(a-b\right)\left(x^2+y\right)\)