tìm snt p thỏa mãn 2p+1, p+10 đều là các snt
Bài 1:Tìm SNT P sao cho
a,P^2+44 là SNT
b,P+10,-+14 là SNT
Bài 2,CMR:n^2-1 và n^2+1 không thể đồng thời là SNT
(n>2,n không chia hết cho 3)
Bài 3: Cho P là SNT>5 và 2P+1 cũng là SNT
CTR:P(P+5)+31 là Hợp Số
Bài 4: CMR:Nếu P là SNT>3 thì (P-1)(P+1) chia hết cho 24
Bài 4:
Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ
hay P-1 và P+1 là các số chẵn
\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)
Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)
Thay P=3k+1 vào (P-1)(P+1), ta được:
\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)
Thay P=3k+2 vào (P-1)(P+1), ta được:
\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)
Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)
mà \(\left(P-1\right)\left(P+1\right)⋮8\)
và (3;8)=1
nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)
Tìm các snt p,q sao cho các số sau cũng là snt
a, p + 94 ; p + 1994
b, 2p - 1 ; 4p - 1
c,2p + 1 ; 4p +1
d, 7p + q ; p9 + 11
tìm số nt sao cho 2p+1; 3p+1; 4+1 và 4p+đều là snt
a) Nếu p là SNT lớn hơn 3 và 2p + 1 cũng là SNT thì 4p + 1 là SNT hay hợp số?
b) Tìm ƯC của hai số 2n + 1 và 3n + 1 ( n \(\in\) N )
c) Tìm tất cả các ước chung của 5n + 6 và 8n + 7
b: Gọi d=UCLN(2n+1;3n+1)
\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UC(2n+1;3n+1)={1;-1}
c: Gọi d=UCLN(75n+6;8n+7)
\(\Leftrightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\)
\(\Leftrightarrow d=13\)
=>UC(5n+6;8n+7)={1;-1;13;-13}
Nếu p là SNT lớn hơn 3 và 2p+1 cũng là SNT thì4p+1 là SNT hay HS
Giải thích cụ thể 3 tk
Ta cho p = 3 để thử các phép tính trên
p là số nguyên tố
2p + 1 = 7 là số nguyên tố
4p + 1 = 13 là số nguyên tố
Bài 3: Cho P là SNT>5 và 2P+1 cũng là SNT
CTR:P(P+5)+31 là Hợp Số
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $5$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ là số tự nhiên; $k\geq 2$.
Nếu $p=3k+1$ thì $2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$ và $2p+1=3(2k+1)>3$ nên $2p+1$ không phải số nguyên tố (trái giả thiết).
Do đó $p=3k+2$.
Khi đó:
$p(p+5)+31=(3k+2)(3k+7)+31=9k^2+27k+45=9(k^2+3k+5)\vdots 9$ nên $p(p+5)+31$ là hợp số (đpcm)
Nếu p và 2p+1 là SNT thì 4p+1 là SNT hay HS
giải thích cụ thể 3 tk
tìm SNT x,y,z thỏa mãn xy+1=z
Bài 1: Tìm 6 SNT thỏa mãn \(p_1^2+p_2^2+p_3^2+p_4^2+p_5^2=p_6^2\)
Bài 2: Tìm SNT p để \(\frac{p+1}{2}\)và \(\frac{p^2+1}{2}\)là số chính phương
Bài 3: Tìm tất cả các cặp số nguyên dương (a,b) thỏa mãn đồng thời 2 điều kiện 4a+1 và 4b-1 nguyên tố cùng nhau; a+b là ước của 16ab+1
thấy ngay \(p_6>2\text{ do đó: }VP\equiv1\left(\text{mod 8}\right)\text{ từ đó suy VP cũng đồng dư với 1 mod 8}\)
có bổ đề SCP LẺ chia 8 dư 1 do đó:
trong 5 số: \(p_1;p_2;...;p_5\text{ có 4 số chẵn; 1 số lẻ không mất tính tổng quát giả sử: }p_5\text{ lẻ}\Rightarrow16+p_5^2=p_6^2\text{(đơn giản)}\)
\(p+1=2a^2;p^2+1=2b^2\Rightarrow p\left(p-1\right)=2\left(b-a\right)\left(b+a\right)\)
\(\text{thấy ngay p lẻ}\Rightarrow UCLN\left(p^2+1,p+1\right)=1;\Rightarrow\left(a,b\right)=1\Rightarrow\left(b-a,a+b\right)=1\)
thấy ngay p>b-a nên: \(p=a+b;p-1=2a-2b\text{ hay:}a+b=2b-2a+1\Leftrightarrow3a=b+1\)
đến đây thì đơn giản
\(16ab+1⋮a+b\Leftrightarrow16ab+4a+4b+1=\left(4a+1\right)\left(4b+1\right)⋮a+b\)
\(d=\left(4a+1,a+b\right)\Rightarrow4a+1-4a-4b=1-4b⋮d\text{ hay }4b-1⋮d\Rightarrow\left(4a+1,a+b\right)=1\)
do đó: \(4b+1⋮a+b\Rightarrow4b+1=ka+kb\text{ với k}\le3\)
\(+,k=3\Rightarrow4b+1=3a+3b\text{ hay }b+1=3a\)
k=2 thì 4b+1=2a+2b hay 2b=2a-1
k=1 thì 3b+1=a