Cho tam giác ABC vuông tại A có AB=15 cm, AC=20cm.
a) Tính các tỉ số lượng giác của gócB
b) Vẽ đường cao AH. Tính độ dài của đoạn AH,HB,HC
c) gọi D và E lần lượt là trung điểm của BH và AH. tia CE cắt AD tại M
Chứng minh CM=AM.cot\(\widehat{ACM}\)
Cho tam giác ABC vuông tại A có đường cao AH, AB=6cm,AC=8cm . Gọi D và E lần lượt là hình chiếu vuông góc của H lên AB và AC. Gọi I, K lần lượt là trung điểm của HB, HC.
a) Chứng minh tứ giác ADHE là hình chữ nhật
b) Tính độ dài các đoạn AH, BH, CH
c) Chứng minh tứ giác DEKI là hình thang vuông và tính diện tích.
d) Tính diện tích hình chữ nhật ADHE
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
b: BC=10cm
AH=4,8cm
BH=3,6cm
CH=6,4cm
Cho tam giác ABC vuông tại A( AB>AC), đường cao AH. Gọi M là trung điểm của AB,AD là phân giác của góc BAH (D thuộc BH),MD cắt AH tại E. 1)Chứng minh rằng: 2 2 AB AC BH CH = 2)Tính độ dài AH biết diện tích các tam giác AHC và ABH lần lượt là 8,64 cm2 và 15,36cm2 . 3) Chứng minh rằng: CE//AD
cho tam giác ABC vuông tại A có AC= 9 cm; BC = 15 cm .Kẻ AH vuông BC
1 CM tam giác ACB đồng dạng tam giác HCA
2 Tính HA,HB,HC
3 Tính tỉ số Stam giác ACB/ S tam giác HCA
4 gọi D,E lần lượt là trung điểm của BH,AH CM CE vuông AD
GIÚP MÌNH VỚI Ạ MÌNH ĐANG CẦN GẤP !!!
1: Xet ΔACB và ΔHCA có
góc C chung
góc CAB=góc CHA
=>ΔACB đồng dạng vói ΔHCA
2: \(AB=\sqrt{15^2-9^2}=12\left(cm\right)\)
AH=9*12/15=108/15=7,2cm
HB=12^2/15=144/15=9,6cm
=>HC=15-9,6=5,4cm
3: \(\dfrac{S_{ACB}}{S_{HCA}}=\left(\dfrac{CB}{CA}\right)^2=\dfrac{25}{9}\)
4: Xét ΔHAB có HE/HA=HD/HB
nên ED//AB
=>DE vuông góc AC
Xét ΔCAD có
DE,AH là đường cao
DE cắt AH tại E
=>Elà trực tâm
=>CE vuông góc AD
Cho tam giác ABC vuông tại A, đường cao AH ( H thuộc BC)
a) Cm: tam giác HAC đồng dạng tam giác ABC
b) CHo AB = 6cm, AC= 8cm. Tính Ah, BC
c) Gọi E, F lần lượt là trung điểm của BH, AH. Gọi G là giao điểm của CF và AE. Tính tỉ số diện tích của tam giác AGF và tam giác CGE
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Ta có: ΔHAC\(\sim\)ΔABC(cmt)
nên \(\dfrac{AH}{AB}=\dfrac{AC}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{6}=\dfrac{8}{10}=\dfrac{4}{5}\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
a) Xét ΔHAC vuông tại H và ΔABC vuông tại A có
\(\widehat{ACH}\) chung
Do đó: ΔHAC\(\sim\)ΔABC(g-g)
Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$ chia cạnh huyền $BC$ thành hai đoạn $BH$, $CH$ có độ dài lần lượt là $4cm$, $9cm$. Gọi $D$ và $E$ lần lượt là hình chiếu của $H$ lên $AB$ và $AC$.
a) Tính độ dài $DE$.
b) Các đường vuông góc với $DE$ tại $D$ và tại $E$ lần lượt cắt $BC$ tại $M$ và $N$. Chứng minh rằng $M$ là trung điểm của $BH$ và $N$ là trung điểm của $CH$.
c) Tính diện tích tứ giác $DENM$.
anh đây đẹp troai, chim dài mét hai !
a) Tứ giác AEHD là hình chữ nhật (tứ giác có 3 góc vuông).
Vì vậy DE = AH.
Áp dụng hệ thức lượng trong tam giác vuông, ta có:
.
Vậy DE = AH = 6(cm).
b) Gọi O là giao điểm của AH và DE. Tứ giác ADHE là hình chữ nhật, suy ra OD = OH.
Xét tam giác DMO và tam giác HMO có:
MO chung
OD = OH
Suy ra (ch - cgv).
Vì vậy . (1)
Từ đó suy ra tam giác MDH cân tại M hay .
Có .
Suy ra . Vì vậy tam giác BDM cân tại M hay MB = MD. (2)
Từ (1) và (2) suy ra BM = MH hay M là trung điểm của BH.
Chứng minh tương tự ta có N là trung điểm của CH.
c) Tứ giác EDMN là hình thang với đường cao DE, các đáy DM và EN.
DM = BH : 2 = 2(cm), EN = AH : 2 = 4,5(cm).
Diện tích hình thang EDMN là:
a) Tứ giác AEHD là hình chữ nhật (tứ giác có 3 góc vuông).
Vì vậy DE = AH.
Áp dụng hệ thức lượng trong tam giác vuông, ta có:
.
Vậy DE = AH = 6(cm).
b) Gọi O là giao điểm của AH và DE. Tứ giác ADHE là hình chữ nhật, suy ra OD = OH.
Xét tam giác DMO và tam giác HMO có:
MO chung
OD = OH
Suy ra (ch - cgv).
Vì vậy . (1)
Từ đó suy ra tam giác MDH cân tại M hay .
Có .
Suy ra . Vì vậy tam giác BDM cân tại M hay MB = MD. (2)
Từ (1) và (2) suy ra BM = MH hay M là trung điểm của BH.
Chứng minh tương tự ta có N là trung điểm của CH.
c) Tứ giác EDMN là hình thang với đường cao DE, các đáy DM và EN.
DM = BH : 2 = 2(cm), EN = AH : 2 = 4,5(cm).
Diện tích hình thang EDMN là:
.
Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc
Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm,
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH.
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN
mình chịu thoiii
khôn vừa th , 1 câu hỏi đáp cho đc bao nhiêu điểm mà đòi phải làm tận 10 bài ,khôn như m thì dell ai muốn làm
Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH AC ( H AC); CK AB ( K AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
Tết đến tưng bừng, vui mừng làm Toán
Giáo viên: Nguyễn Cao Uyển Mi
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 9: (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác
ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
Bài 10: Cho tam giác ABC có góc A nhỏ hơn 900. Vẽ ra phía ngoài tam giác ABC các
tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.
Giúp mình với ạ, mik đang cần gấp
Ai giúp mik với mik đang cần gấp ạ
Cho tam giác ABC vuông tại A có AB = 12 cm, BC = 20 cm. Vẽ đường cao AH, trên tia đối của tia HA lấy điểm D sao cho H là trung điểm của AD. Gọi E, F lần lượt là trung điểm của DC và AC, DF cắt HC tại M. Vẽ tia phân giác của góc BAH cắt BH tại N. Chứng minh NH< NB
Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, CH có độ dài lần lượt là 4cm, 9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC
a) Tính độ dài đoạn thẳng DE
b) Các đường thẳng vuông góc với DE tại D và tại E lần lượt cắt BC tại M và N. Chứng minh M là trung điểm của BH và N là trung điểm của CH
c) Tính diện tích tứ giác DENM
search : https://hoc24.vn/hoi-dap/question/56467.html