Tìm GTLN hoặc GTNN:
C=\(|x+5|+|7+x|\)
Tìm GTNN hoặc GTLN của:
a) A=|2x-1|-4 (GTLN)
b) B = 1,5-|2-x| (GTLN)
c) C = |x-3|(GTNN)
d)D = 10-4|x-2|(GTLN)
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
1.Tìm GTNN hoặc GTLN
-|5-2x|+2020-(3y-x)^4
2.tìm x biết
3/4(x+1):-3/5=5x/-7
Tìm Gtnn hoặc gtln của biểu thức
Q=-5|x+1/2|+2021 C=5/3.|x-2|+2
\(Q=-5\left|x+\frac{1}{2}\right|+2021\le2021\forall x\)
Dấu ''='' xảy ra khi x = -1/2
Vậy GTLN của Q là 2021 khi x = -1/2
\(C=\frac{5}{3}\left|x-2\right|+2\ge2\forall x\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN của C là 2 khi x = 2
Tìm GTLN hoặc GTNN của các biểu thức sau:
a) Q = 9/2 + | 2/5 - x |
b) M = | x +2/3 | - 3/5
c) N = - | 7/4 - x | - 8
a) Ta thấy: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)
\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)
Dấu \("="\) xảy ra khi: \(\left|\dfrac{2}{5}-x\right|=0\Leftrightarrow\dfrac{2}{5}-x=0\Leftrightarrow x=\dfrac{2}{5}\)
Vậy \(Min_Q=\dfrac{9}{2}\) khi \(x=\dfrac{2}{5}\).
\(---\)
b) Ta thấy: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\forall x\)
Dấu \("="\) xảy ra khi: \(\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)
Vậy \(Min_M=-\dfrac{3}{5}\) khi \(x=-\dfrac{2}{3}\).
\(---\)
c) Ta thấy: \(\left|\dfrac{7}{4}-x\right|\ge0\forall x\)
\(\Rightarrow-\left|\dfrac{7}{4}-x\right|\le0\forall x\)
\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\forall x\)
Dấu \("="\) xảy ra khi: \(\left|\dfrac{7}{4}-x\right|=0\Leftrightarrow\dfrac{7}{4}-x=0\Leftrightarrow x=\dfrac{7}{4}\)
Vậy \(Max_N=-8\) khi \(x=\dfrac{7}{4}\).
a) Ta có: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)
\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)
Dấu "=" xảy ra khi:
\(\dfrac{2}{5}-x=0\)
\(\Rightarrow x=\dfrac{2}{5}\)
Vậy: ...
b) Ta có: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)
\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\)
Dấu "=" xảy ra:
\(x+\dfrac{2}{3}=0\)
\(\Rightarrow x=-\dfrac{2}{3}\)
Vậy: ...
c) Ta có: \(-\left|\dfrac{7}{4}-x\right|\le0\forall x\)
\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\)
Dấu "=" xảy ra:
\(\dfrac{7}{4}-x=0\)
\(\Rightarrow x=\dfrac{7}{4}\)
Vậy: ...
`#\text{ID01}`
a)
`Q = 9/2 + |2/5 - x|`
Vì `|2/5 - x| \ge 0` `AA` `x`
`=> 9/2 + |2/5 - x| \ge 9/2` `AA` `x`
`=>` GTNN của Q là `9/2` khi `|2/5 - x| = 0`
`=> 2/5 - x = 0`
`=> x = 2/5`
b)
`M = |x + 2/3| - 3/5`
Vì `|x + 2/3| \ge 0` `AA` `x`
`=> |x + 2/3| - 3/5 \ge -3/5` `AA` `x`
`=>` GTNN của M là `-3/5` khi `|x + 2/3| = 0`
`=> x + 2/3 = 0`
`=> x = -2/3`
c)
`N=-|7/4 - x| - 8`
Vì `|7/4 - x| \ge 0` `AA` `x`
`=> -|7/4 - x| \le 0` `AA` `x`
`=> -|7/4 - x| - 8 \le -8` `AA` `x`
`=>` GTLN của N là `-8` khi `|7/4 - x| = 0`
`=> 7/4 - x = 0`
`=> x = 7/4`
Tìm GTNN hoặc GTLN của:
A= (x+9) : (x-7)
Tìm GTLN hoặc GTNN của
C=(X+\(\dfrac{1}{2}\))2-7
\(C\ge-7\forall x\)
Dấu '=' xảy ra khi x=-1/2
Có c>=0-7=-7 xảy ra khi x=-1/2
Các dạng bài này ko có giới hạn x thì ko tìm dc gtln đâu nhé
Tìm GTNN hoặc GTLN A=-2(X-3)2-7/11x|3y+7|-2011
TÌM GTNN (hoặc GTLN) của A = x.(x-3).(x-4).(x-7)
Tìm GTNN hoặc GTLN
A=5-|x+0,75|
B=|x-5,2|+6,5
C= -|x+4/5|-6
a) Vì \(-|x+0,75|\le0;\forall x\)
\(5-|x+0,75|\le5-0;\forall x\)
Hay \(A\le5;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow|x+0,75|=0\)
\(\Leftrightarrow x=-0,75\)
Vậy MAX A=5 \(\Leftrightarrow x=-0,75\)
( tương tự ko giải đc ib )
A = 5 - |x + 0,75|
Ta có: |x + 0,75| \(\ge\)0 \(\forall\)x
=> 5 - |x + 0,75| \(\le\)5 \(\forall\)x
Dấu "=" xảy ra khi : x + 0,75 = 0 <=> x = -0,75
Vậy Max của A = 5 tại x = -0,75
B = |x - 5,2| + 6,5
Ta có: |x - 5,2| \(\ge\)0 \(\forall\)x
=> |x - 5,| + 6,5 \(\ge\)6,5 \(\forall\)x
Dấu "=" xảy ra khi: x - 5 = 0 <=> x = 5
Vậy Min của B = 6,5 tại x = 5
C = -|x + 4/5| - 6
Ta có: -|x + 4/5| \(\le\)0 \(\forall\)x
=> -|x+ 4/5| - 6 \(\le\)-6 \(\forall\)x
Dấu "=" xảy ra khi: x + 4/5 = 0 <=> x = -4/5
Vậy Max của C = -6 tại x = -4/5
a)Ta có : \(\left|x+0,75\right|\ge0=>5-\left|x+0,75\right|\le5\)
Dấu "=" xảy ra khi \(x+0,75=0=>x=-0,75\)
Vậy \(A_{max}=5\)khi\(x=-0,75\)
b)Ta có: \(\left|x-5,2\right|\ge0=>\left|x-5,2\right|+6,5\ge6,5\)
Dấu "=" xảy ra khi \(x-5,2=0=>x=5,2\)
Vậy \(B_{min}=6,5\)khi\(x=5,2\)
c)Ta có : \(\left|x+\frac{4}{5}\right|\ge0=>-\left|x+\frac{4}{5}\right|-6\le6\)
Dấu "=" xảy ra khi \(x+\frac{4}{5}=0=>x=-\frac{4}{5}\)
Vậy \(C_{max}=6\)khi\(x=-\frac{4}{5}\)