Tứ Giác ABCD có M,N,I,J là trung điểm AD,BC,AC,BD. tìm vecto MN + vecto IJ
Cho tứ giác ABCD. Gọi M, N, J lần lượt là trung điểm của các cạnh AD, BC, AC và BD. Chứng minh rằng : vecto MA +vecto IJ = vecto NB
Cho tứ giác ABCD, I và J là trung điểm của AB và CD,O là trung điểm I. M là điểm bất kỳ.Chứng minh: a) vecto OA + vecto OB + vecto OC + vecto OD = vecto O b) vecto MA + vecto MB + vecto MC + vecto MD = 4MO c) vecto AC + vecto BD = vecto 2IJ
có ai biết làm toán hình ko chỉ mình với
BÀI 1 : Cho hình bình hành ABCD tâm O . chứng minh rằng :
a) vecto CO - vecto OB = vecto BA b) vecto AB - vecto BC = vecto DB
c) vecto DA - vecto DB = vecto OD - vecto OC d) vecto DA - vecto DB + vecto DC = vecto O
BÀI 2 : chứng minh rằng 4 điểm A,B,C,D bất kì ta có :
vecto AC + vecto BD = vecto AD + vecto BC
BÀI 3 : cho tứ giác ABCD . Gọi I , J là trung điểm AD , BC ; P là trung điểm IJ.
a) tính vecto AB + vecto DC + vecto BD + vecto CA
b) CMR : vecto AB + vecto CD = vecto AD + vecto CB , vecto AB + vecto DC = 2IJ
c) CMR : vecto PA + vecto PB + vecto PC + vecto PD = vecto 0 , vecto AB + vecto AC + vecto AD = 4AP
MÌNH CẦN GẤP LẮM GIÚP MÌNH NHA
bài 1
a CO-OB=BA
<=.> CO = BA +OB
<=> CO=OA ( LUÔN ĐÚNG )=>ĐPCM
b AB-BC=DB
<=> AB=DB+BC
<=> AB=DC(LUÔN ĐÚNG )=> ĐPCM
Cc DA-DB=OD-OC
<=> DA+BD= OD+CO
<=> BA= CD (LUÔN ĐÚNG )=> ĐPCM
d DA-DB+DC=0
VT= DA +BD+DC
= BA+DC
Mà BA=CD(CMT)
=> VT= CD+DC=O
BÀI 2
AC=AB+BC
BD=BA+AD
=> AC+BD= AB+BC+BA+AD=BC+AD (đpcm)
Cho 4 diem a b c d .gọi i và j lan lượt là trung điểm cua ab và cd. Chứng minh vecto ac+bd= vecto ad+bc=2vecto ij
Cho 4 diem A B C D. Lấy I và J là trung diem cua AB và CD. Chứng minh vecto AC+ vecto BD= vecto AD+ vecto BC= 2 vecto IJ
Cho tứ giác ABCD .Gọi M,N,I,J lần lượt là trung điểm của các cạnh AD,BC,AC và BD.Chứng minh rằng: a) vecto AB+DC =2MN b) vecto AB-DC=2IJ c) vecto NA+ND=BA+CD d) vecto MA+IJ=NB
Cho M,N,I là trung điểm của AB,CD,MN
CHỨNG MINH: 1) vecto MN = 1/2 ( vecto AC + vecto BD) = 1/2 (vecto AD + vecto BC)
2) vecto AD + vecto BD + vecto AC + vecto BC = 4 vecto MN
Cho tứ diện ABCD. Gọi M, N, H, K, I, J lần lượt là trung điểm của các cạnh : AB, CD, BC, AD, AC, BD
a) C/M:MN, HK, IJ đồng quy tại G ( G là trọng tâm tứ diện ABCD)
B)CMR: GA + GB+GC+GD=0 (có dấu vecto nha! )
C) CMR: FA +FB+FC+FD =4FG
D)CMR: AB+AC+AD =4AG
Cho tứ diện ABCD có G là trọng tâm của tam giác BCD. Gọi H, K lần lượt là trung điểm của các cạnh AB, AC. Chứng minh rằng
a) vecto BC = 2 vecto Hk
b) vecto AB + vecto AC + vecto AD = 3 vecto AG
a: Xét ΔABC có
H,K lần lượt là trung điểm của AB,AC
=>HK là đường trung bình của ΔABC
=>HK//BC và \(HK=\frac12BC\)
=>\(\overrightarrow{HK}=\frac12\cdot\overrightarrow{BC}\)
=>\(\overrightarrow{BC}=2\cdot\overrightarrow{HK}\)
b: \(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\)
\(=\overrightarrow{AG}+\overrightarrow{GB}+\overrightarrow{AG}+\overrightarrow{GD}+\overrightarrow{AG}+\overrightarrow{GC}\)
\(=3\cdot\overrightarrow{AG}+\left(\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}\right)=3\cdot\overrightarrow{AG}\)