cho tam giác ABCcó A= 60, kẻ tia phân giác của góc B cắt AC tại D, tia phân giác góc C cắt AB tại E. Qua A kẻ đường thẳng song song với CE, đường thẳng này cắt BC tại F.
CMR: a) AFC = CAF. b) BDC = AEC
Cho tam giác ABC có góc A = 600, kẻ tia phân giác của góc B cắt AC ở D, tia phân giác góc C cắt AB ở E. Qua A kẻ đường thẳng song song với CE, đường thẳng này cắt đường thẳng BC tại E. a. Chứng minh rằng góc AFC = CAF b. Chứng minh rằng góc BDC = AEC
Cho ABC có A = 60độ , kẻ tia phân giác của góc B cắt AC ở D, tia phân giác góc C cắt AB ở E.
Qua A kẻ đường thẳn song song với CE, đường thẳng này cắt đường thẳng BC tại F.
a) Chứng minh rằng: AFC = CAF
b) Chứng minh rằng: BDC = AEC
Cho tam giác ABC có \(\widehat{A}=60^o\), kẻ tia phân giác của góc B cắt AC tại D, tia phân giác của góc C cắt AB ở E. Qua A kẻ đường thẳng song song với CE, đường thẳng này cắt đường thẳng BC tại F.
a, Chứng minh rằng : \(\widehat{AFC}=\widehat{CAF}\)
b, Chứng minh rằng : \(\widehat{BDC}=\widehat{AEC}\)
Cho tam giác ABC có AB lớn hơn AC tia phân giác của góc A cắt BC tại D qua B kẻ đường thẳng vuông góc với AC cắt AC tại E a Chứng minh AB =AE b qua qua e kẻ đường thẳng song song với BC cắt AD tại F kẻ đường hai đường thẳng song song với BC tại K
Gọi Bx là tia đối của tia BA. Lấy E trên AC sao cho AB = AE
Xét tam giác BAD=EAD c-g-c => BD = DE và DEC = CBx
Trong tam giác ABC, BAC + ABC + ACB = 180 => ACB = 180 - BAC - ABC => ACB < 180 - ABC
Ta có DBx + ABC = 180 (hai góc kề bù) => DBx = 180 - ABC
=>ACB < DBx => ACB < DEC => Trong tam giác DEC, DC > DE (Quan hệ giữa góc và cạnh)
Vậy BD < DC
Cho tam giác ABC , vẽ tia phân giác của  cắt BC tại D . Qua C kẻ đường thẳng song song vs AD cắt tia đối của AB tại E
a, CM: ACE=AEC
b, Vẽ tia phân giác EAC cắt CE tại E . C/M : AF vuông góc với CE
Cho tam giác ABC , vẽ tia phân giác của  cắt BC tại D . Qua C kẻ đường thẳng song song vs AD cắt tia đối của AB tại E
a, CM: ACE=AEC
b, Vẽ tia phân giác EAC cắt CE tại E . C/M : AF vuông góc với CE
a/
Ta có: AD //CE => AEC= BAD ( đồng vị) (1)
DAC= ACE ( sole trong) (2)
và AD là tia phân giác của góc BAC => BAD=DAC (3)
Từ (1), (2),(3) => ACE=AEC
b/
Ta có:
ABC + EAC=180 ( kề bù)
và AD là tia phân giác của ABC => DAC= \(\frac{ABC}{2}\)
AF là tia phân giác của EAC => FAC= \(\frac{EAC}{2}\)
Ta có: DAF= DAC+EAC
= \(\frac{ABC}{2}+\frac{EAC}{2}\)
= \(\frac{180}{2}\)
= 90
và AD // CE => DAF=AFE=90 ( sole trong)
=> AF vuông góc với CE
Cho tam giác abc . tia phân giác của góc a cắt bc tại d . Qua d kẻ đường thẳng song song với ac cắt ab tại e. Qua e kẻ đường thẳng song song với ad cắt bc tại h. Chứng minh rằng :
a; góc hed bằng góc cad ;
b; eh là tia phân giác của góc bed
CHo tam giác ABC. Phân giác của góc B cắt cạnh AC tại điểm D. Qua D kẻ một đường thẳng cắt cạnh AB tại điểm E sao cho góc EBD=EBD. Qua E kẻ đường thẳng song song với BD, đường thẳng này cắt cạnh AC tại điểm F.
a) Chứng minh ED // BC
b) Chứng minh EF là tia phân giác của góc AED
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E a) Chứng minh tam giác ADE cân b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF. c) Chứng minh BD = CE
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD