Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Thái Vân
Xem chi tiết
Sóii Trắngg
Xem chi tiết
Võ Thị Phương Trà
Xem chi tiết
Sky Khánh
Xem chi tiết
Me
5 tháng 12 2019 lúc 13:10

                                                     Bài giải

a) Không tìm được GTLN

Tìm GTNN :

Do \(\left|x-2\right|\ge0\) \(\Rightarrow\text{ }\left|x-2\right|+2019\ge2019\) Dấu " = " xảy ra khi \(\left|x-2\right|=0\)\(\Rightarrow\text{ }x-2=0\text{ }\Rightarrow\text{ }x=2\)

Vậy GTNN của \(\left|x-2\right|+2019\) là 2019

b,  GTLN :

Do \(\left|x+1\right|\ge0\text{ }\Rightarrow\text{ }2018-\left|x+1\right|\le2018\) Dấu " = " xảy ra khi \(\left|x+1\right|=0\text{ }\Rightarrow\text{ }x+1=0\text{ }\Rightarrow\text{ }x=-1\)

\(\Rightarrow\text{ }Max\text{ }2018-\left|x+1\right|=2018\)

GTNN không tìm được

c, Quên cách làm rồi !

Khách vãng lai đã xóa
Đoàn Thị Bích Châu
28 tháng 2 2020 lúc 15:13

a) A= |x+2| + 2019

Vì đằng trước |x+2| là dấu "+" nên biểu thức A phải tìm GTNN

Vì |x+2| luôn lớn hơn hoặc bằng 0 (ghi kí hiệu nha), với mọi x

nên |x+2| + 2019 luôn hơn hoặc bằng 2019, với mọi x

Khi dấu "=" xảy ra thì biểu thức A đạt GTNN là 2019 

Khi đó: |x+2|=0

=>         x+2 =0

=>         x=-2

Vậy biểu thức A đạt GTNN là 2019 khi x= -2

b) B= 2018 - |x+1|

Vì đằng trước |x+1| là dấu "-" nên biểu thức B phải tìm GTLN

Vì -|x+1| luôn bé hơn hoặc bằng 0, với mọi x

nên 2018 -|x+1| luôn bé hơn hoặc bằng 0, với mọi x

Khi dấu "=" xảy ra thì biểu thức B đạt GTLN là 2018

Khi đó: |x+1| =0

=>         x+1  =0

=>         x=-1

Vậy biểu thức B đạt GTLN là 2018 khi x =-1

c) C = |x-3| + |y-2| +2020

Vì đằng trước |x-3| và |y-2| là dấu "+' nên biểu thức C phải tìm GTNN 

Vì |x-3| luôn lớn hơn hoặc bằng 0, với mọi x

và |y-2| luôn lớn hơn hoặc bằng 0, với mọi y

=> |x-3| + |y-2| luôn lớn hơn hoặc bằng 0, với mọi x, y

=> |x-3| + |y-2| + 2020 luôn lớn hơn hoặc bằng 2020, với mọi x, y

Khi dấu "=" xảy ra thì biểu thức C đạt GTNN là 2020 

Khi đó: |x-3|=0 và |y-2|=0

=>         x-3=0 và   y-2=0

=>         x=3    và   y=2

Vậy biểu thức Cđạt GTNN là 2020 khi x=3 và y=2

Khách vãng lai đã xóa
❖︵crυѕн⁀ᶦᵈᵒᶫ
Xem chi tiết
Nguyễn Xuân Nghĩa (Xin...
12 tháng 1 2021 lúc 22:16

Giá trị nhỏ nhất của A = -40

x = 2035

Giá trị nhỏ nhất của B = -207

x = 1

Giá trị nhỏ nhất của C = 4

x = -1

Giá trị nhỏ nhất của D = -2

x ∈ {-2;-1}

Giá trị nhỏ nhất của E = -2021

x = 2019

y = -2020

Hàn Vũ Nhi
Xem chi tiết
Milk Tea
Xem chi tiết
.
12 tháng 1 2021 lúc 13:53

Ta có: \(C=\frac{\left|x-2019\right|+2020}{\left|x-2019\right|+2021}=\frac{\left|x-2019\right|+2021-1}{\left|x-2019\right|+2021}=1-\frac{1}{\left|x-2019\right|+2021}\)

=> C đạt giá trị nhỏ nhất khi \(\frac{1}{\left|x-2019\right|+2021}\) lớn nhất

=> |x - 2019| + 2021 nhỏ nhất

Ta có: \(\left|x-2019\right|\ge0\)

\(\Rightarrow\left|x-2019\right|+2021\ge2021\)

Dấu "=" xảy ra khi x - 2019 = 0

=> x = 2019

\(\Rightarrow C=\frac{\left|2019-2019\right|+2020}{\left|2019-2019\right|+2021}=\frac{2020}{2021}\)

Vậy \(MinC=\frac{2020}{2021}\Leftrightarrow x=2019\).

Khách vãng lai đã xóa
Vũ Ngọc Diệp
Xem chi tiết
Akai Haruma
27 tháng 12 2023 lúc 23:48

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:

$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$

$|x-2020|\geq 0$ với mọi $x$

$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$

Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$

Tức là $x=2020$

Tiểu Ngôn Tình
Xem chi tiết
Mai Tú Quỳnh
14 tháng 5 2020 lúc 17:04

Bạn hỏi câu này bên Hoidap247 đúng không nè? :)

a) Ta có : \(\left(x+1\right)^{2020}\ge0\forall x\inℤ\)

\(\Rightarrow2019-\left(x+1\right)^{2020}\le2019\)

Dấu "=" xảy ra khi \(\left(x+1\right)^{2020}=0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

Vậy GTLN của P = 2019 tại \(x=-1\).

b) Ta có : \(\left|2019-x\right|\ge0\forall x\inℤ\)

\(\Rightarrow2020-\left|2019-x\right|\le2020\)

Dấu "=" xảy ra khi \(\left|2019-x\right|=0\)

\(\Rightarrow2019-x=0\)

\(\Rightarrow x=2019\)

Vậy GTLN của Q = 2020 tại \(x=2019\).

Khách vãng lai đã xóa
Tran Le Khanh Linh
14 tháng 5 2020 lúc 19:28

a) \(P=2019-\left(x+1\right)^{2020}\)

Ta có \(\left(x+1\right)^{2020}\ge0\forall x\)

\(\Rightarrow2019-\left(x+1\right)^{2020}\ge2019\)

Dáu "=" xảy ra <=> \(\left(x+1\right)^{2020}=0\)

<=> x+1=0

<=> x=-1

Vậy MaxA=2019 đạt được khi x=-1

b) \(Q=2020-\left|2019-x\right|\)

Ta có \(\left|2019-x\right|\ge0\forall x\)

\(\Rightarrow2020-\left|2019-x\right|\ge2020\)

Dấu "=" xảy ra <=> |2019-x|=0

<=> 2019-x=0

<=> x=2019

Vậy MaxQ=2020 đạt được khi x=2019

Khách vãng lai đã xóa