tính giá trị biểu thức a+b+c nếu : a=1235 b=4853 c=3279
Viết số thích hợp vào chỗ chấm (theo mẫu)
a) Nếu a = 10 thì 65 + a = 65 + … =.
Giá trị của biểu thức 65 + a với a = 10 là ………….
b) Nếu b = 7 thì
Giá trị của biểu thức với b = 7 là …………
c) Nếu m = 6 thì
Giá trị của biểu thức với m = 6 là ……….
d) Nếu n = 5 thì
Giá trị của biểu thức 185 : n với n = 5 là ……..
a) Nếu a = 10 thì 65 + a = 65 + 10 = 75.
Giá trị của biểu thức 65 + a với a = 10 là 75.
b) Nếu b = 7 thì 185 – b = 185 – 7 = 178.
Giá trị của biểu thức 185 – b với b = 7 là 178.
c) Nếu m = 6 thì 423 + m = 423 + 6 = 429.
Giá trị của biểu thức 423 + m với m = 6 là 429.
d) Nếu n = 5 thì 185 : 5 = 37.
Giá trị của biểu thức 185 : n với n = 5 là 37.
Tính giá trị biểu thức a + b x c, với a = 213; b = 205 ; c = 152
Trả lời : Giá trị của biểu thức a + b x c là..............
Tính giá trị biểu thức (theo mẫu)
a) 6 - b với b = 4
Mẫu : a) Nếu b = 4 thì 6 - b = 6 - 4 = 2.
b) 115 - c với c = 7;
c) a + 80 vơí a = 15.
b) Nếu c = 7 thì 115 - c = 115 - 7 = 108
c) Nếu a = 15 thì a + 80 = 15 + 80 = 95
Tính giá trị biểu thức (theo mẫu)
a) 6 - b với b = 4
Mẫu : a) Nếu b = 4 thì 6 - b = 6 - 4 = 2.
b) 115 - c với c = 7;
c) a + 80 vơí a = 15.
b) Nếu c = 7 thì 115 - c = 115 - 7 = 108
c) Nếu a = 15 thì a + 80 = 15 + 80 = 95
Cho biểu thức: (a+b-c)-(a-b+c) a) Thu gọn biểu thức trên b) Tính giá trị biểu thức với a=5, b=7, c=8
\(a,\left(a+b-c\right)-\left(a-b+c\right)\)
\(=a+b-c-a+b-c\)
\(=2b-2c\)
\(=2\left(b-c\right)\)
\(b,\) Thay \(a=5,b=7,c=8\) vào biểu thức
\(\Rightarrow\left(5+7-8\right)-\left(5-7+8\right)=-2\)
1) Nếu x+y=1, thì giá trị của biểu thức x3+y3+3xy là
A.2
B.3
C.4
D.cả A,B,C đều sai
2)Nếu x-y=1, thì giá trị của biểu thức x3-y3-3xy là
A.1
B.2
C.3
D.4
3) Cho x+y= -2, xy=-15 thì giá trị của biểu thức x2+y2 là.
A) 30 ; B) 32 ;C) 28 ; D) Cả A và B đều sai.
4) Với giả thiết bài 3, ta có giá trị của biểu thức x3+y3 là:
A) 80 ; B) 81; C) 82 ; D) Một kết quả khác
5) Với giả thiết bài 3, ta có giá trị của biểu thức x4+y4 là:
A. 706 ; B. 702 ; C. 708 ; D. 704
6)Giá trị nhỏ nhất của biểu thức P= x(x+1)(x+2)(x+3) là
A. 1 ; B. 2 ; C. -1 ; D.-2
7)Cho biểu thức M=2x2+9y2- 6xy-6x-12y+2037 . Giá trị nhỏ nhất của biểu thức M là
A. 2007 ; B. 2008 ; C; 2009 ; D. 2010
8) Với giả thiết bài 7 , biểu thức M đạt giá trị nhỏ nhất khi
A)x=5;y= 7/3
B)x= -5; y= 7/3
C) x=5; y= -7/3
D)cả A và C đều sai
9) Cho biểu thức Q= 2xy+6x-2y-2x2-y2+ 2015 .Giá trị lớn nhất của biểu thức Q là
A. 2010 ; B. 2012 ; C. 2020 ; D. Một kết quả khác
Câu 1: x^3+y^3+3xy
=(x+y)^3-3xy(x+y)+3xy
=(x+y)^3-3xy+3xy
=1
Câu 2:
x^3-y^3-3xy
=(x-y)^3+3xy(x-y)-3xy
=1^3
=1
Câu 3:
\(x^2+y^2=\left(x+y\right)^2-2xy=4-2\cdot\left(-15\right)=4+30=34\)
Câu 4:
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=-8-3\cdot\left(-2\right)\cdot\left(-15\right)=-8-3\cdot30=-98\)
Câu 5: B
Câu 6: C
Câu 7: B
Câu 8: D
Câu 10: B
1) Nếu x+y=1, thì giá trị của biểu thức x3+y3+3xy là
A.2
B.3
C.4
D.cả A,B,C đều sai
2)Nếu x-y=1, thì giá trị của biểu thức x3-y3-3xy là
A.1
B.2
C.3
D.4
3) Cho x+y= -2, xy=-15 thì giá trị của biểu thức x2+y2 là.
A) 30 ; B) 32 ;C) 28 ; D) Cả A và B đều sai.
4) Với giả thiết bài 3, ta có giá trị của biểu thức x3+y3 là:
A) 80 ; B) 81; C) 82 ; D) Một kết quả khác
5) Với giả thiết bài 3, ta có giá trị của biểu thức x4+y4 là:
A. 706 ; B. 702 ; C. 708 ; D. 704
6)Giá trị nhỏ nhất của biểu thức P= x(x+1)(x+2)(x+3) là
A. 1 ; B. 2 ; C. -1 ; D.-2
7)Cho biểu thức M=2x2+9y2- 6xy-6x-12y+2037 . Giá trị nhỏ nhất của biểu thức M là
A. 2007 ; B. 2008 ; C; 2009 ; D. 2010
8) Với giả thiết bài 7 , biểu thức M đạt giá trị nhỏ nhất khi
A)x=5;y= 7/3
B)x= -5; y= 7/3
C) x=5; y= -7/3
D)cả A và C đều sai
9) Cho biểu thức Q= 2xy+6x-2y-2x2-y2+ 2015 .Giá trị lớn nhất của biểu thức Q là
A. 2010 ; B. 2012 ; C. 2020 ; D. Một kết quả khác
a) Tìm giá trị nhỏ nhất của biểu thức \(x^2-8x+5\)
b) Cho \(a^3+b^3+c^3=3abc\) và \(a+b+c\) ≠ 0
Tính giá trị của biểu thức N =\(\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
Tính giá trị biểu thức :
M= x^2/a^2 + y^2/b^2+ z^2/c^2 nếu x/a+y/b+z/c=1 và a/+b/y+c/z = 0
Từ \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0=>\frac{ayz}{xyz}+\frac{bxz}{xyz}+\frac{cxy}{xyz}=0=>\frac{ayz+bxz+cxy}{xyz}=0=>ayz+bxz+cxy=0\)
Từ \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1=>\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1^2\)
\(=>\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)
\(=>\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xyc}{abc}+\frac{yza}{abc}+\frac{xzb}{abc}\right)=1-2.0=1\)
Vậy M=1
a - b là biểu thức có hai chữ số. Tính giá trị của a - b nếu:
a) a = 32 và b = 20;
b) a = 45 và b = 36;
c) a = 16 m và b = 10m.
a) a = 32 và b = 20 thì a - b = 32 - 20 =12
b) a = 45 và b = 36 thì a - b = 45 - 36 = 9
c) a = 16 m và b = 10m thì a - b = 18m - 10m = 8m