Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cù Khắc Huy
Xem chi tiết
Cù Khắc Huy
Xem chi tiết
Nguyễn Linh Chi
20 tháng 10 2020 lúc 14:45

ĐK: \(\sqrt{x-2m}-3\ne0\Leftrightarrow x-2m\ne9\Leftrightarrow x\ne9+2m\)

Hàm số xác đinh trên khoảng (3; 5) 

<=>  2m + 9 \(\le\)3 hoặc 2m + 9 \(\ge\)5

<=> m \(\le\)-3 hoặc m \(\ge\)-2

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 1 2019 lúc 8:51

Đáp án D

qui dao
Xem chi tiết
Diệu Khói
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2021 lúc 13:48

ĐKXĐ: \(\left\{{}\begin{matrix}x-m+1\ge0\\-x+2m>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge m-1\\x< 2m\end{matrix}\right.\)

\(\Rightarrow x\in[m-1;2m)\)

Để hàm xác định trên (3;4)

\(\Rightarrow\left(3;4\right)\subset[m-1;2m)\)

\(\Rightarrow\left\{{}\begin{matrix}m-1\le3\\2m\ge4\end{matrix}\right.\) \(\Rightarrow2\le m\le4\)

Nguyễn Gia Bích
Xem chi tiết
Trần Thùy
Xem chi tiết
Bành Thụy Hóii
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 9 2019 lúc 8:45

a/ ĐKXĐ:

\(\left\{{}\begin{matrix}3-x\ge0\\x+1\ge0\\x^2-5x+6\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le3\\x\ge-1\\x\ne\left\{2;3\right\}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-1\le x< 3\\x\ne2\end{matrix}\right.\)

b/ ĐKXĐ:

\(\left\{{}\begin{matrix}x-2m+3\ge0\\-x+m+5>0\\x\ne m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2m-3\\x< m+5\\x\ne m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2m-3\le x< m+5\\x\ne m\end{matrix}\right.\)

\(m+5>2m-3\Rightarrow m< 8\)

Để hàm số xác định trên \(\left(0;1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\left(0;1\right)\subset[2m-3;m+5)\\m< 8\\m\notin\left(0;1\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2m-3\le0\\m+5\ge1\\m< 8\\\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-4\le m\le\frac{3}{2}\\m< 8\\\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1\le m\le\frac{3}{2}\\-4\le m\le0\end{matrix}\right.\)

Nguyễn Việt Lâm
30 tháng 9 2019 lúc 8:48

c/ ĐKXĐ: \(x\ne m\)

Để hàm số xác định trên \(\left(-1;2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}m\le-1\\m\ge2\end{matrix}\right.\)

d/ Ta có \(a=1>0\) ; \(-\frac{b}{2a}=1\)

\(\Rightarrow\) Hàm số đồng biến trên \(\left(1;+\infty\right)\)

\(\Rightarrow\) Hàm số đồng biến trên \(\left[2;5\right]\)

\(\Rightarrow\min\limits_{\left[2;5\right]}y=y\left(2\right)=2^2-2.2+2m+3\)

\(\Rightarrow2m+3=-3\)

\(\Rightarrow m=-3\)

Min YoongG
Xem chi tiết
Cao Thành Thái
12 tháng 10 2021 lúc 10:03

Hàm số $y=\sqrt{x-m+2}+\sqrt{x-2m+3}$ xác định khi và chỉ khi
\[\left\{\begin{aligned}&x-m+2\geq 0 \\&x-2m+3\geq 
0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&x\geq m-2 
\\&x\geq 2m-3.\end{aligned}\right. \tag{$*$}\]

Khi $m-2\geq 2m-3$ hay $m\leq 1$ thì $(*)$ tương đương $x\geq m-2$. Do đó tập xác định của hàm số đã cho là $[m-2;+\infty)$.
Yêu cầu bài toán thỏa mãn khi và chỉ khi
\[(0;+\infty)\subset [m-2;+\infty) \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m-2\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m\leq 1 \\&m\leq 2\end{aligned}\right. \Leftrightarrow m\leq 1.\]Khi $m-2< 2m-3$ hay $m> 1$ thì $(*)$ tương đương $x\geq 2m-3$. Do đó tập xác định của hàm số đã cho là $[2m-3;+\infty)$.
Yêu cầu bài toán thỏa mãn khi và chỉ khi
\[(0;+\infty)\subset [2m-3;+\infty) \Leftrightarrow \left\{\begin{aligned}&m>1 \\&2m-3\leq 0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&m> 1 \\&m\leq \dfrac{3}{2}\end{aligned}\right. \Leftrightarrow 1<m\leq \dfrac{3}{2}.\]

Kết hợp hai trường hợp trên, ta được $m\leq \dfrac{3}{2}$ là các giá trị thỏa mãn yêu cầu bài toán.

Khách vãng lai đã xóa