Tìm tập xác định của hàm số y = \(\frac{\sqrt{3-x}+\sqrt{x+1}}{x^2-5x+6}\)
Tìm m để hàm số y = \(\frac{\sqrt{x-2m+3}}{x-m}+\frac{3x-1}{\sqrt{-x+m+5}}\) xác định trên khoảng ( 0 ; 1)
Tìm các giá trị thực của tham số m để hàm số y = \(\frac{x+m+2}{x-m}\) xác định trên ( -1 ; 2 )
Tìm m để hàm số y \(x^2-2x+2m+3\) có giá trị nhỏ nhất trên đoạn [ 2 ; 5 ] bằng - 3
a/ ĐKXĐ:
\(\left\{{}\begin{matrix}3-x\ge0\\x+1\ge0\\x^2-5x+6\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le3\\x\ge-1\\x\ne\left\{2;3\right\}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-1\le x< 3\\x\ne2\end{matrix}\right.\)
b/ ĐKXĐ:
\(\left\{{}\begin{matrix}x-2m+3\ge0\\-x+m+5>0\\x\ne m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2m-3\\x< m+5\\x\ne m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2m-3\le x< m+5\\x\ne m\end{matrix}\right.\)
\(m+5>2m-3\Rightarrow m< 8\)
Để hàm số xác định trên \(\left(0;1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\left(0;1\right)\subset[2m-3;m+5)\\m< 8\\m\notin\left(0;1\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2m-3\le0\\m+5\ge1\\m< 8\\\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-4\le m\le\frac{3}{2}\\m< 8\\\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}1\le m\le\frac{3}{2}\\-4\le m\le0\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne m\)
Để hàm số xác định trên \(\left(-1;2\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}m\le-1\\m\ge2\end{matrix}\right.\)
d/ Ta có \(a=1>0\) ; \(-\frac{b}{2a}=1\)
\(\Rightarrow\) Hàm số đồng biến trên \(\left(1;+\infty\right)\)
\(\Rightarrow\) Hàm số đồng biến trên \(\left[2;5\right]\)
\(\Rightarrow\min\limits_{\left[2;5\right]}y=y\left(2\right)=2^2-2.2+2m+3\)
\(\Rightarrow2m+3=-3\)
\(\Rightarrow m=-3\)