cho a, b, c, x, y, z thỏa mãn \(ã+by+cz\ne0\) ; \(a+b+c=\frac{1}{2020}\). Tính giá trị biểu thức \(T=\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\ne0\) rút gọn biểu thức \(X=\frac{x^2+y^2+z^2}{\left(ã+by+cz\right)^2}\)
cho a,b,c,x,y,z thỏa mãn: ax+by=c, by+cz=a, cz+ax=b, x,y,z khác -1, (a+b+c) khác 0. Tính P=1/(x+1)+1/(y+1)+1/(z+1)
Ta có ax + by = c ; by + cz = a
<=> cz - ax = a - c (1)
mà cz + ax = b (2)
Từ (1) và (2) => \(cz=\frac{a-c+b}{2}\Rightarrow z=\frac{a-c+b}{2c}\Rightarrow z+1=\frac{a+b+c}{2c}\)
=> \(\frac{1}{z+1}=\frac{2c}{a+b+c}\)
Tương tự ta có \(\frac{1}{x+1}=\frac{2a}{a+b+c}\); \(\frac{1}{y+1}=\frac{2b}{a+b+c}\)
=> P = \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)
Bài 1 : Cho 3 số a , b , c và y , x , z thoả mãn :
x = by + cz ; y = ax + cz ; z = ax + by và \(x+y+z\ne0\) ; \(y\times x\times z\ne0\)
Hãy tính giá trị của biểu thức \(A=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)
x=by+cz;y=ax+cz;z=ax+by
=>x+y+z=2(ax+by+cz)
\(\Leftrightarrow\frac{x+y+z}{2}=ax+by+cz\)
\(\Leftrightarrow y+z=\frac{x+y+z}{2}+ax;z+x=\frac{x+y+z}{2}+by;x+y=\frac{x+y+z}{2}+cz\)
\(\Leftrightarrow\frac{y+z-x}{2}=ax;\frac{z+x-y}{2}=by;\frac{x+y-z}{2}=cz\)
\(\Leftrightarrow\frac{y+z-x}{2x}=a;\frac{z+x-y}{2y}=b;\frac{x+y-z}{2z}=c\)
\(\Rightarrow A=\frac{1}{1+\frac{x+y-z}{2z}}+\frac{1}{1+\frac{y+z-x}{2x}}+\frac{1}{1+\frac{z+x-y}{2y}}=\frac{1}{\frac{x+y+z}{2x}}+\frac{1}{\frac{x+y+z}{2y}}+\frac{1}{\frac{x+y+z}{2z}}\)
\(=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Cho a,b,c,d là các số thực bất kỳ thỏa mãn \(\left(a^2+b^2+c^2\right)\cdot\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
CMR:\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(a,b,c\ne0\right)\)
bài này là bđt bunhia copxi khi xảy ra dấu =
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\ge\left(ax+by+cz\right)^2\)
c/m nhân tung ra thôi bạn
!@@@
Cho x , y , z khác 0 , x + y + z khác 0 thỏa mãn x = by + cz , y = ax + cz , z = ax + by
Tính giá trị của biểu thức : A =\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)
Cho a,b,c,x,y,z là các số dương thỏa mãn (a^2+b^2+c^2) (x^2+y^2+z^2) = (ax + by + cz)^2
CMR a/x = b/y + c/z
đây là BĐT Bu-nhi-a-cốp-xki mà. chỉ cần nhân ra r đưa về hằng đẳng thức là đc
Dành cho các bạn chuyên toán nè? | Yahoo Hỏi & Đáp
Cho a,b,c,x,y,z là các số dương thỏa mãn (a^2+b^2+c^2) (x^2+y^2+z^2) = (ax + by + cz)^2
CMR a/x = b/y + c/z
Theo BĐT Bunhia ta có (a^2+b^2+c^2) (x^2+y^2+z^2) >_ (ax + by + cz)^2 a/x = b/y + c/z
suy ra a/x=b/y=c/z
Cho các số dương a,b,c,x,y,z thỏa mãn a+b+c=x+y+z. Chứng minh rằng: ax(a+x)+by(b+y)+cz(c+z)\(\ge\)3(abc+xyz)
Cho các số dương a,b,c,x,y,z thỏa mãn x=by+cz;y=ax+cz;z=ax+by
Chứng minh rằng: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)
Cộng vế với vế của ba đẳng thức ta đc :
\(x+y+z=2\left(ax+by+cz\right)\Rightarrow ax+by+cz=\frac{x+y+z}{2}\) (*)
Lấy (*) - (1) ta có : \(ax+by+cz-\left(by+cz\right)=\frac{x+y+z}{2}-x\)
<=> \(ax=\frac{y+z-x}{2}\Leftrightarrow a=\frac{y+z-x}{2x}\Rightarrow a+1=\frac{y+z-x}{2x}+1=\frac{x+y+z}{2x}\)
=> \(\frac{1}{a+1}=\frac{2x}{x+y+z}\)
CMTT với 1/b+1 và 1/c+1
=> ĐPCM