cho AB là đường kính của đường tròn tâm O bán kính 2 cm. Vẽ dây AC=2.4cm,tia BC cắt tiếp tuyến tại A của (O) tại M. tính AM
Cho đường tròn tâm O , bán kính r , đường kính AB , dây AC không qua tâm , H là trung điểm AC. a) Tính góc ACB và chứng minh OH song song với BC b) Tiếp tuyến tại C của đường tròn O cắt tia OH ở M. CM: MA là tiếp tuyến tại A của đường tròn
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó:ΔACB vuông tại C
=>\(\widehat{ACB}=90^0\)
Ta có: ΔOAC cân tại O(OA=OC)
mà OH là đường trung tuyến
nên OH\(\perp\)AC và OH là tia phân giác của góc AOC
Ta có: OH\(\perp\)AC(cmt)
AC\(\perp\)CB tại C(Do ΔACB vuông tại C)
Do đó: OH//BC
b:
OH là phân giác của góc AOC
=>\(\widehat{AOH}=\widehat{COH}\)
mà M\(\in\)OH
nên \(\widehat{AOM}=\widehat{COM}\)
Xét ΔOCM và ΔOAM có
OC=OA
\(\widehat{COM}=\widehat{AOM}\)
OM chung
Do đó: ΔOCM=ΔOAM
=>\(\widehat{OCM}=\widehat{OAM}\)
mà \(\widehat{OCM}=90^0\)
nên \(\widehat{OAM}=90^0\)
=>OA\(\perp\)MA tại A
=>MA là tiếp tuyến tại A của (O)
Cho đường tròn tâm O, đường kính AB, dây AC ( AC<BC). Gọi H là trung điểm AC. Tiếp tuyến tại C của (O) cắt tia OH tại M.
a) C/m : AM là tiếp tuyến của (O)
b) Cho bán kính của (O) = 15 cm, AC = 24 cm. Tính OM
c) Tia BC cắt tia AM tại I. C/m : IM=AM
d) C/m : cos2B = 1 - 2sin^2B
Mọi người giúp em câu d) với !
Cho đường tròn tâm O đường kính AB. Trên bán kính OA, lấy điểm C tùy ý (C khác O và A). Vẽ đường tròn tâm J đường kính AC. Gọi I là trung điểm BC. Qua I vẽ dây cung MN vuông góc BC; AM cắt đường tròn tâm J tại E.
a/ CM CIME nội tiếp.
b/ CM BMCN là hình thoi. Từ đó suy ra ba điểm E, C, N cùng thuộc một đường thẳng.
c/ CM IE là tiếp tuyến của đường tròn tâm J.
d/ Đường tròn tâm M bán kính MI cắt đường tròn tâm O tại P và Q, Gọi H là giao điểm của PQ và MN. Tính tỉ số HM/HN
cho đường tròn tâm O bán kính R đường kính AB vẽ dây BC=R đường thẳng BC cắt tiếp tuyến của (O) ở A tại D a, tính AC b, M là trung điểm AD. c/m MC là tiếp tuyến của (o) c, OM cắt AC tại I. tính AI,OI theo R
Cho đường tròn tâm O bán kính R và dây AB ko qua O gọi I là trung điểm của AB tiếp tuyến tại Q của đường tròn tâm O cắt đường thẳng OI tại S a/ CmmSB là tiếp tuyến đường tròn tâm O b/cho bik R=5cm AB =8cm Tính độ dài tiếp tuyến SA giai giup minh bai nay duoc ko
Cho AB là một đường kính của đường tròn (O;R = 2cm), vẽ dây AC = 2,4cm,
tia BC cắt tiếp tuyến tại A của (O) ở M . Độ dài đoạn AM = cm
Ta có tam giác ABC nội tiếp (O) có AB là đường kính
=>tam giác ABC vuông tại C
->AC là đường cao của tam giác ABM
=>BC=\(\sqrt{AB^2-AC^2}=3,2cm\)
=>MC=AC2/BC=2,42/3,2=1,8cm
=>AM=\(\sqrt{AC^2+MC^2}=3\)
Giải giúp mình các bài này với ạ!
1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm
2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O
3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.
cho đường tròn O bán kính R, dây AB cố định. Điểm M thuộc cung lớn AB. Gọi I là trung điểm của dây AB. Vẽ đường tròn tâm O' qua M tiếp xúc với AB tại A. Tia MI cắt đường tròn tâm o' tại N và cắt đường tròn tâm O tại C. cm NA song sonh với BC?
cho đường tròn O bán kính R, dây AB cố định. Điểm M thuộc cung lớn AB. Gọi I là trung điểm của dây AB. Vẽ đường tròn tâm O' qua M tiếp xúc với AB tại A. Tia MI cắt đường tròn tâm o' tại N và cắt đường tròn tâm O tại C. cm NA song sonh với BC?
Xét (O'): \(O'A\perp AB\) tại A và O'A là bán kính.
\(\Rightarrow\)AB là tiếp tuyến của (O') tại A.
\(\Rightarrow\widehat{NAB}\) là góc tạo bởi tiếp tuyến và dây cung chắn cung AN.
Mặt khác \(\widehat{AMN}\) là góc nội tiếp chắn cung AN.
\(\Rightarrow\widehat{AMN}=\widehat{NAB}\left(1\right)\)
Xét (O): \(\widehat{AMC}=\widehat{ABC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\widehat{NAB}=\widehat{ABC}\) nên AN//BC.
M.n giúp e vs ạ . Cảm ơn m.n nhiều
Cho đường tròn tâm O bán kính R , đường kính AB. Một điểm C thuộc đường tròn tâm O bán kính R sao cho AC=R . Kẻ OH vuông góc với AC tại H . Qua C vẽ một tiếp tuyến (O;R) . Tiếp tuyến này cắt OH tại D. Chứng minh :
a. AD Tiếp tuyến của đường tròn tâm O
b . Tính BC thep R và các tỉ số lượng giác của góc ABC
c. Gọi M là điểm thuộc tia đối của tia AC . Chứng minh: CM . MA = MO ^2 . AO ^2