Có bao nhiêu giá trị của m để giá trị nhỏ nhất của hàm số
f (x) = x2 + (2m+1)x +m2 -1 trên đoạn [0;1] bằng 1
Cho hàm số f(x) = x - m 2 + m x + 1 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 1] bằng – 2.
A. m= 1
B. m= -2
C. m= -1
D. m= -1 hoặc m= 2
Đạo hàm f'(x) = m 2 - m + 1 ( x + 1 ) 2 > 0, ∀ x ∈ [ 0 ; 1 ]
Suy ra hàm số f(x) đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m
Theo bài ta có:
-m2+ m= -2 nên m= -1 hoặc m= 2.
Chọn D.
Có bao nhiêu giá trị của m để giá trị nhỏ nhất của hàm số f ( x ) = e 2 x - 4 e x + m trên đoạn [0;ln4] bằng 6 ?
A. 3.
B. 4.
C. 1.
D. 2.
Có bao nhiêu giá trị thực của tham số m để giá trị lớn nhất của hàm số f ( x ) = x 2 - 2 x + m - 1 trên đoạn - 1 ; 2 bằng 6.
A. 1.
B. 4.
C. 3.
D. 2.
Cho hàm số f x = x - m 2 + m x + 1 . Tìm giá trị của tham số m để giá trị nhỏ nhất của hàm số f(x) trên đoạn [ 0;1 ] bằng -2
A. m ∈ - 1 ; 2
B. m ∈ 1 ; - 2
C. m ∈ 1 ; 2
D. m ∈ - 1 ; - 2
Ta có f ' x = - m 2 + m + 1 x + 1 2 > 0
Suy ra f(x) là hàm đồng biến trên [0;1]
Do đó f 0 ≤ f x ≤ f 1 hay
- m 2 + m ≤ f x ≤ 1 2 - m 2 + m + 1
Khi đó
m i n x ∈ 0 ; 1 f x = - m 2 + m = - 2 ⇔ m = - 1 m = 2
Đáp án A
Cho hàm số f ( x ) = x 4 - 4 x 3 + 4 x 2 + a . Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số đã cho trên đoạn [0; 2] .Có bao nhiêu số nguyên a thuộc đoạn [-3; 3] sao cho M ≤ 2 m ?
A. 3
B. 7
C. 6
D. 5
Đáp án D
Xét hàm số .
;
Bảng biến thiên
Do nên suy ra .
Suy ra .
Nếu thì ,
.
Nếu thì ,
.
Do đó hoặc , do a nguyên và thuộc đoạn nên .
Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số y = x - m 2 - 2 x - m trên đoạn [0;4] bằng -1
A. 3
B. 2
C. 1
D. 0
Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số y = x - m 2 - 2 x - m trên đoạn [0;4] bằng -1.
A. 0
B. 2
C. 3
D. 1
Chọn D
Điều kiện: x ≠ m
Hàm số đã cho xác định trên [0;4] khi
Ta có
Hàm số đồng biến trên đoạn [0;4] nên
Kết hợp với điều kiện (*) ta được m = -3. Do đó có một giá trị của m thỏa yêu cầu bài toán.
Có bao nhiêu giá trị của tham số m để hàm số y = 2 m x + m 2 + m - 2 x + m có giá trị nhỏ nhất trên đoạn 1 ; 4 bằng 1?
A. Vô số
B. 0
C. 2
D. 1
Chọn đáp án D
Vậy có đúng 1 giá trị của thỏa mãn điều kiện bài ra.
Cho hàm số y = x 4 + a x + a x + 1 . Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số đã cho trên đoạn 1 ; 2 . Có bao nhiêu giá trị nguyên của a để M ≥ 2 m .
A. 15
B. 14
C. 17
D. 16
Có bao nhiêu giá trị của m để giá trị nhỏ nhất của hàm số f ( x ) = e 2 x - 4 e x + m trên [ 0; ln4] bằng 6 .
A. 3.
B. 4.
C. 1.
D. 2.
Đặt t= ex , với x ∈ [0 ; ln4] => t ∈ [1 ;4].
Khi đó f(x) = |t2 – 4t + m| = |g(t)|.
Có g’ (t) = 2t-4 và g’ (t) =0 khi t= 2.
Ta có bảng biến thiên
Từ bảng biến thiên ta thấy
Chọn D.