cho hình biết AB vuông góc với AC. Góc B=120 độ, góc D=60 độ.Chứng tỏ AC vuông góc với CD
1. Tam giác ABC vuông góc tại A, đường cao AH. Biết AB:AC=3:4. Và AB+AC=21
a. Tính độ dài các cạnh tam giác ABC
b. Tính độ dài các đoạn AH, BH, CH
2. Cho hình thang ABCD có góc A=góc D= 90 độ; góc B= 60 độ; CD=30 cm; CA vuông góc với CB. Tính diện tích hình thang
1. Tam giác ABC vuông góc tại A, đường cao AH. Biết AB:AC=3:4. Và AB+AC=21
a. Tính độ dài các cạnh tam giác ABC
b. Tính độ dài các đoạn AH, BH, CH
2. Cho hình thang ABCD có góc A=góc D= 90 độ; góc B= 60 độ; CD=30 cm; CA vuông góc với CB. Tính diện tích hình thang
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
Cho hình thang cân ABCD ( BC // AD); góc A = 60 , AB = AC
a) Tính các góc B , góc C ,góc D
b) Chứng minh AC là tia phân giác của góc BAD và AC vuông góc với CD
b: Xét ΔBAC có BA=BC
nên ΔBAC cân tại B
Suy ra: \(\widehat{BAC}=\widehat{BCA}\)
mà \(\widehat{BCA}=\widehat{CAD}\)
nên \(\widehat{BAC}=\widehat{DAC}\)
hay AC là tia phân giác của \(\widehat{BAD}\)
quan sat hình ( biết AC và BD đều vuông góc với CD ,góc A = 45 đôh,góc B=60 độ)
cho biết số đo của góc AEB
Với niềm tin trong sáng và hy vọng vào một tương lai xán lạn cùng với sức mạnh của đảng và nhà nước sẽ giúp bạn giải được bài toán này!!!
Câu nói trên chi mang tính chất giải trí ,không xúc phạm đến bất kì cá nhân hay tập thể nào :)))))))
1. Tam giác ABC vuông góc tại A, đường cao AH. Biết AB:AC=3:4. Và AB+AC=21
a. Tính độ dài các cạnh tam giác ABC
b. Tính độ dài các đoạn AH, BH, CH
2. Cho hình thang ABCD có góc A=góc D= 90 độ; góc B= 60 độ; CD=30 cm; CA vuông góc với CB. Tính diện tích hình thang
Bài 1:
a: \(AB=21\cdot\dfrac{3}{7}=9\left(cm\right)\)
AC=21-9=12(cm)
=>BC=15(cm)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=7,2(cm)
Xét ΔAHB vuông tại H có \(AB^2=AH^2+BH^2\)
hay BH=5,4(cm)
=>CH=9,6(cm)
Quan sát hình 28 (biết AC và BD đều vuông góc với CD, A=45 độ, B=60 độ) Cho biết số đo của góc AEB
cho tam giác ABC vuông tại A (AC>AB). M là trung điểm của BC, qua M kẻ Me vuông góc với AB tại E, MF vuông góc với AC tại F
a/ AEMF là hình gì
b/ Cho biết E và F là trung điểm của AB và AC. chứng minh BÈC là hình thang
c/ giả sử góc B=60 độ, BC=24cm. Tính AM và chu vi tam giác AMB
d/ kẻ AH vuông góc với BC tại H, chứng minh góc EHF=90 độ
Ta có AB vuông góc với AC, MF vuông góc với AC suy ra MF song song với AB, xét tam giácBca có m là trung điểm của BC, MF song song với AB suy ra ra f là trung điểm của AC mà f là trung điểm của mn suy ra m n cắt AC tại f suy ra tứ giác mcna là hình bình hành
Cho tam giác ABC có góc C = 90 độ, góc A = 30 độ, AC=10cm. Kẻ CD vuông góc với AB ( D thuộc AB), DE vuông góc với AC, E thuộc AC. Tính độ dài AE
Xét tam giác ABC ta có : \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\)
=> \(\widehat{ABC}=60^o\)
Xét tam giác BCD ta có \(\widehat{BCD}+\widehat{CBD}+\widehat{BDC}=180^o\)
=> \(\widehat{BCD}=30^o\)
Ta có : \(\widehat{ACD}+\widehat{BCD}=90^o\)=> \(\widehat{ACD}=60^o\)
Xét tam giác CDE có \(\hept{\begin{cases}\widehat{CED}=90^o\\\widehat{DCE}=60^o\end{cases}}\)
=> Tam giác CDE nửa đều => CE = 1/2.CD (1)
Xét tam giác ACD có \(\hept{\begin{cases}\widehat{ADC}=90^o\\\widehat{ACD}=60^o\end{cases}}\)
=> Tam giác ACD nửa đều => CD = 1/2.AC (2)
Từ (1) và (2) => CE = 1/4.AC
=> AE = 3/4.AC => AE = 7,5 ( cm )
Vậy AE = 7,5 cm
Cho tam giác ABC có góc C = 90 độ, góc A = 30 độ, AC=10cm. Kẻ CD vuông góc với AB (D thuộc AB), DE vuông góc với AC (E thuộc AC). Tính độ dài AE
Cho hình vẽ biết góc A =60 độ góc B =60 độ
a) Chứng tỏ : xx’//yy’
b) Chứng tỏ: d vuông góc với xx'
Cho hình thang ABCD có BC // AD. Đường chéo AC vuông góc với CD tại C. biết rằng góc D bằng 60 độ và AC là phân giác trong của góc BAD.
a) Hãy tính các góc còn lại của hình thang
b) Cho BC= 3 cm, CD=2.5 cm. Tính chu vi hình thang