tìm m để hàm số \(\frac{\sqrt{x-2m+3}}{x-m}+\frac{3x-1}{\sqrt{-x+m+5}}\) xác định trên (0;1)
Tìm m để hàm số \(y=\sqrt{x-m}+\frac{1}{\sqrt{2m-3-x}}\) xác định trên khoảng (0, 1 )
cho f(x)=\(\sqrt{x-m+1}-\frac{x}{\sqrt{2m+1-x}}\)
tìm m để hàm số xác định trên [2;3]
Tìm M để hàm số \(y=\frac{1}{\sqrt{x-2m}-3}\) xác định trên khoảng (3, 5)
ĐK: \(\sqrt{x-2m}-3\ne0\Leftrightarrow x-2m\ne9\Leftrightarrow x\ne9+2m\)
Hàm số xác đinh trên khoảng (3; 5)
<=> 2m + 9 \(\le\)3 hoặc 2m + 9 \(\ge\)5
<=> m \(\le\)-3 hoặc m \(\ge\)-2
Tìm giá trị của tham số m để:
Hàm số \(y=\sqrt{x-m+1}+\frac{2x}{\sqrt{-x+2m}}\) xác định trên (-1;3)
Tìm m để hàm số y = x − 2 m + 3 x − m + 3 x − 1 − x + m + 5 xác định trên khoảng (0; 1)
A. m ∈ 1 ; 3 2
B. m ∈ − 3 ; 0
C. m ∈ − 3 ; 0 ∪ 0 ; 1
D. m ∈ − 4 ; 0 ∪ 1 ; 3 2
a.\(y=\sqrt{x-m+2}+\sqrt{x-2m+3}\)
b.\(\sqrt{2x-4m+1}+\frac{x-2}{x-m+2}\)
Tìm m để hàm số x xác định với mọi x \(\in(0,+\infty)\)
Hàm số $y=\sqrt{x-m+2}+\sqrt{x-2m+3}$ xác định khi và chỉ khi
\[\left\{\begin{aligned}&x-m+2\geq 0 \\&x-2m+3\geq
0\end{aligned}\right. \Leftrightarrow \left\{\begin{aligned}&x\geq m-2
\\&x\geq 2m-3.\end{aligned}\right. \tag{$*$}\]
Kết hợp hai trường hợp trên, ta được $m\leq \dfrac{3}{2}$ là các giá trị thỏa mãn yêu cầu bài toán.
1. Cho y=\(\dfrac{\sqrt{3x-5m+6}}{x+m-1}\) . Tìm m để hàm số xác định trên (0;m)
Cho hàm số y=\(\dfrac{2x+m}{\sqrt{x-2m-1}-3}\)
Tìm m để hàm số xác định trên khoảng (0;+vô cùng). trình bày cách làm rõ nhá
100% group làm sai
1, Cho hàm số y=\(\sqrt{x-2m+1}\) .Tìm m để hàm số xác định trên (2 ;+∞)