(x-2/3)^3=1/27
(X+0,7)^3=-27
(2/3x-1/3)^5=1/243
X : (-1/3)3 = -1/3
(x+ 0,7 )3 = -27
(4/5)5.x=(4/5)7
(2/3.x-1/3)5 =1/243
Mk cần gấp !
Tìm x
\(1.\left(x+0,7\right)^3=-27\)
\(2.\left(2x-1\right)^{10}=49^5\)
\(3.\left(\frac{2}{3}x-\frac{1}{3}\right)^5=\frac{1}{243}\)
\(4.\left(\frac{2}{5}-3x\right)^2=\frac{9}{25}\)
CÁC BẠN GIÚP MÌNH VỚI !!!!!
1) \(\left(x+0,7\right)^3=-27\Leftrightarrow\left(x+0,7\right)^3=\left(-3\right)^3\Leftrightarrow x+0,7=-3\Leftrightarrow x=-3,7\)2) \(\left(2x-1\right)^{10}=49^5\Leftrightarrow\left(2x-1\right)^{10}=\left(7^2\right)^5\)
\(\Leftrightarrow\left(2x-1\right)^{10}=7^{10}\)
\(\Leftrightarrow2x-1=7\Leftrightarrow x=4\)
mấy câu khác tương tự
GIẢI PHƯƠNG TRÌNH
1)\(\dfrac{x+1}{35}+\dfrac{x+3}{33}=\dfrac{x+5}{31}+\dfrac{x+7}{29}\)
2)x(x+1)(x+2)(x+3)=24
3)\(\dfrac{x-1}{13}-\dfrac{2x-13}{15}=\dfrac{3x-15}{27}-\dfrac{4x-27}{29}\)
4)\(\dfrac{1909-x}{91}+\dfrac{1907-x}{93}+\dfrac{1905-x}{95}+\dfrac{1903-x}{91}+4=0\)
1) PT \(\Leftrightarrow\left(\dfrac{x+1}{35}+1\right)+\left(\dfrac{x+3}{33}+1\right)=\left(\dfrac{x+5}{31}+1\right)+\left(\dfrac{x+7}{29}+1\right)\)
\(\Leftrightarrow\dfrac{x+36}{35}+\dfrac{x+36}{33}=\dfrac{x+36}{31}+\dfrac{x+36}{29}\)
\(\Leftrightarrow\left(x+36\right)\left(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}\right)=0\)
\(\Leftrightarrow x+36=0\) (Do \(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}>0\))
\(\Leftrightarrow x=-36\).
Vậy nghiệm của pt là x = -36.
2) x(x+1)(x+2)(x+3)= 24
⇔ x.(x+3) . (x+2).(x+1) = 24
⇔(\(x^2\) + 3x) . (\(x^2\) + 3x + 2) = 24
Đặt \(x^2\)+ 3x = b
⇒ b . (b+2)= 24
Hay: \(b^2\) +2b = 24
⇔\(b^2\) + 2b + 1 = 25
⇔\(\left(b+1\right)^2\)= 25
+ Xét b+1 = 5 ⇒ b=4 ⇒ \(x^2\)+ 3x = 4 ⇒ \(x^2\)+4x-x-4=0 ⇒x(x+4)-(x+4)=0
⇒(x-1)(x+4)=0⇒x=1 và x=-4
+ Xét b+1 = -5 ⇒ b=-6 ⇒ \(x^2\)+3x=-6 ⇒\(x^2\) + 3x + 6=0
⇒\(x^2\) + 2.x.\(\dfrac{3}{2}\) + (\(\dfrac{3}{2}\))2 = - \(\dfrac{15}{4}\) Hay ( \(x^2\) +\(\dfrac{3}{2}\) )2= -\(\dfrac{15}{4}\) (vô lí)
⇒x= 1 và x= 4
a)\(3^{-1}\).\(4^x\)=\(\dfrac{5}{3}.2^7\)
b) \(9^{-x}\).\(27^x\)=243
a: =>4^x=640
=>\(x\in\varnothing\)
b: =>\(3^{-2x}\cdot3^{3x}=243\)
=>3^x=243
=>x=5
a, ( 3x +1) mũ 3 = -27
b, (\(\frac{1}{2}nh\text{â}n\)2 mũ x +4 nhân 2 mũ x= 9 nhân 25
c, ( 3x - 2) mũ 5 = - 243
a, (3x+1)3=-27 b, (1/2.2x+4.2x ) = 9.25
=> ( 3x+1)3=(-3)3 => [ 2x.(1/2+4 ) ]=9.25 c, ( 3x-2)5= - 243
=> 3x+1=-3 => 2x.9/2 = 225 => ( 3x-2)5=(-3)5
=>3x=-4 => 2x = 225:9/2 => 3x-2=-3
=> x = -4/3 => 2x = 50 (ko có trường hợp nào ) => 3x= -1
=> x=-1/3
(x-1,2)^2=4
(x+1)^3=-125
(x+1,5)^8+(2,7-y)^10=0
3^-1.4^x+ 3.$^x+5/3. 27
9^-x. 27^x= 243
\(\left(x-1,2\right)^2=4\)
⇔\(x^2-2.x.1,2+1,2^2=4\)
⇔\(x^2-2,4x+1,44=4\)
⇔\(x^2-2,4x=4-1,44\)
⇔\(x\left(x-2,4\right)=2,56\)
⇔\(x=2,56\) hoặc \(x-2,4=2,56\)
⇔\(x=2,56\) hoặc \(x=4,96\)
a) \(\left(x-1,2\right)^2=4=2^2\)
\(\Leftrightarrow x-1,2=4\)
\(\Leftrightarrow x=5,2\)
b) \(\left(x+1\right)^3=-125=\left(-5\right)^3\)
\(\Leftrightarrow x+1=-5\)
\(\Leftrightarrow x=-6\)
c) \(\left(x+1,5\right)^8+\left(2,7-y\right)^{10}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1,5=0\\2,7-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1,5\\y=2,7\end{matrix}\right.\)
tìm x
3^x-1=1/243
81^-2x.27^x=9^5
2^x+2^x+3=144
3^ x -1 = 1/243
3^x =1/243 +1
3^x = 244 / 243
Ta thấy đây ko phải lũy thừa của 3 => Ko có x thỏa mãn
81^-2x . 27^x =9^5
81^-2 . 81^x . 27^x =9^5
1/9^4 . (81.27)^x =9 ^5
3^6x = 9^5 : 1/9^4
3^6x = 9^9
3^6x = 3^18
=> 6x =18
x=3
2^x +2^x +3 =144
2.(2^x) =141
2^x+1 = 141
Ta thấy 141 ko phải lũy thừa của 2 => ko có x thỏa mãn
1) Tìm số tự nhiên x,y biết :
a) \(0,25^x.12^x=243\)
b) \(38^y:19^y\) = 512
2) Tìm x :
a) \(3^x+3^{x+2}=2430\)
b) \(2^{x+3}-2^x=224\)
3) Tìm số hữu tỉ x :
a) \(\left(x-\dfrac{1}{4}\right)^2=\dfrac{4}{9}\)
b)\(\left(x+0,7\right)^3=-27\)
4) Tìm x:
a)\(\left(\dfrac{2}{5}-3x\right)^2=\dfrac{9}{25}\)
b) \(\left(\dfrac{2}{3}x-\dfrac{1}{3}\right)^5=\dfrac{1}{243}\)
1)
a) \(0,25^x\cdot12^x=243\)
\(\Leftrightarrow\left(0,25\cdot12\right)^x=3^5\)
\(\Leftrightarrow3^x=3^5\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
b) \(38^y:19^y=512\)
\(\Leftrightarrow2y\cdot y=512\)
\(\Leftrightarrow2y^2=512\)
\(\Leftrightarrow y^2=256\)
\(\Leftrightarrow\left[{}\begin{matrix}y=16\\y=-16\end{matrix}\right.\)
Vậy \(y_1=-16;y_2=16\)
2)
a) \(3^x+3^{x+2}=2430\)
\(\Leftrightarrow\left(1+3^2\right)\cdot3^x=2430\)
\(\Leftrightarrow\left(1+9\right)\cdot3^x=2430\)
\(\Leftrightarrow10\cdot3^x=2430\)
\(\Leftrightarrow3^x=243\)
\(\Leftrightarrow3^x=3^5\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
b) \(2^{x+3}-2^x=224\)
\(\Leftrightarrow\left(2^3-1\right)\cdot2^x=224\)
\(\Leftrightarrow\left(8-1\right)\cdot2^x=224\)
\(\Leftrightarrow7\cdot2^x=224\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow2^x=2^5\)
\(\Leftrightarrow x=5\)
Vậy \(x=5\)
3)
a) \(\left(x-\dfrac{1}{4}\right)^2=\dfrac{4}{9}\)
\(\Leftrightarrow x-\dfrac{1}{4}=\pm\dfrac{2}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{4}=\dfrac{2}{3}\\x-\dfrac{1}{4}=-\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}+\dfrac{1}{4}\\x=-\dfrac{2}{3}+\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{12}\\x=-\dfrac{5}{12}\end{matrix}\right.\)
Vậy \(x_1=\dfrac{11}{12};x_2=-\dfrac{5}{12}\)
b) \(\left(x+0,7\right)^3=-27\)
\(\Leftrightarrow\left(x+\dfrac{3}{10}\right)^3=\left(-3\right)^3\)
\(\Leftrightarrow x+\dfrac{3}{10}=-3\)
\(\Leftrightarrow x=-3-\dfrac{3}{10}\)
\(\Leftrightarrow x=-\dfrac{37}{10}\)
Vậy \(x=-\dfrac{37}{10}\)
4)
a) \(\left(\dfrac{2}{5}-3x\right)^2=\dfrac{9}{25}\)
\(\Leftrightarrow\dfrac{2}{5}-3x=\pm\dfrac{3}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{5}-3x=\dfrac{3}{5}\\\dfrac{2}{5}-3x=-\dfrac{3}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=-\dfrac{1}{5}\\3x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{15}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(x_1=-\dfrac{1}{15};x_2=\dfrac{1}{3}\)
b) \(\left(\dfrac{2}{3}x-\dfrac{1}{3}\right)^5=\dfrac{1}{243}\)
\(\Leftrightarrow\dfrac{2}{3}x-\dfrac{1}{3}=\dfrac{1}{3}\)
\(\Leftrightarrow2x-1=1\)
\(\Leftrightarrow2x=1+1\)
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\)
Vậy \(x=1\)
1. a) \(0,25^x.12^x=243\)
\(\Rightarrow\left(0,25.12\right)^x=243\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
Vậy \(x=5.\)
b) \(38^y:19^y=512\)
\(\Rightarrow\left(38:19\right)^y=512\)
\(\Rightarrow2^y=2^9\)
\(\Rightarrow y=9\)
Vậy \(y=9.\)
2) a) \(3^x+3^{x+2}=2430\)
\(\Rightarrow3^x\left(1+9\right)=2430\)
\(\Rightarrow3^x=243=3^5\)
\(\Rightarrow x=5\)
Vậy x=5.
b) \(2^{x+3}-2^x=224\)
\(\Rightarrow2^x\left(8-1\right)=224\)
\(\Rightarrow2^x=32=2^5\)
\(\Rightarrow x=5\)
Vậy x=5.
Bài 3: dễ tự làm.