Cho đường tròn tâm O, đường kính AB, M là điểm cố định trong đường tròn, M khác O. Dây CD đi qua M; H và K là hình chiếu của A và B lên CD. Xác định vị trí của CD để AH + BK lớn nhất
cho đường tròn (o r) đường kính AB và CD cố định và vuông óc với nhau .M là một điểm bất kì trên đoạn thẳng OB(M khác O và B ) tia CM cắt đường tròn tâm O tại điểm thứ 2 là N (N khắc C ).Kẻ đường thẳng d đi qua M vuông góc với AB ,qua điểm N kẻ tiếp tuyến với đường tròm tâm O , tiếp tuyến này cắt đườn thẳng d taik điểm P 1)Cm OMNP là tứ giác nội tiếp 2)tính CM.CN theo R
1: góc OMP=góc ONP=90 độ
=>OMNP nội tiếp
2: Xet ΔCOM vuông tại O và ΔCND vuôngtại N có
góc OCM chung
=>ΔCOM đồng dạngvới ΔCND
=>CO/CN=CM/CD
=>CM*CN=CO*CD=2R^2
Cho đường tròn tâm O và dây AB cố định, điểm M tùy ý thay đổi trên đoạn AB. Qua A và M dựng đường tròn tâm I tiếp xúc đường tròn tâm O tại A. Qua B và M dựng đường tròn tâm J tiếp xúc đường tròn tâm O tại B. 2 đường tròn tâm I và đường tròn tâm J cắt nhau tại điểm thứ 2 là N. CMR MN luôn đi qua 1 điểm cố định
cho đường tròn O bán kính R, dây AB cố định. Điểm M thuộc cung lớn AB. Gọi I là trung điểm của dây AB. Vẽ đường tròn tâm O' qua M tiếp xúc với AB tại A. Tia MI cắt đường tròn tâm o' tại N và cắt đường tròn tâm O tại C. cm NA song sonh với BC?
cho đường tròn O bán kính R, dây AB cố định. Điểm M thuộc cung lớn AB. Gọi I là trung điểm của dây AB. Vẽ đường tròn tâm O' qua M tiếp xúc với AB tại A. Tia MI cắt đường tròn tâm o' tại N và cắt đường tròn tâm O tại C. cm NA song sonh với BC?
Xét (O'): \(O'A\perp AB\) tại A và O'A là bán kính.
\(\Rightarrow\)AB là tiếp tuyến của (O') tại A.
\(\Rightarrow\widehat{NAB}\) là góc tạo bởi tiếp tuyến và dây cung chắn cung AN.
Mặt khác \(\widehat{AMN}\) là góc nội tiếp chắn cung AN.
\(\Rightarrow\widehat{AMN}=\widehat{NAB}\left(1\right)\)
Xét (O): \(\widehat{AMC}=\widehat{ABC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\widehat{NAB}=\widehat{ABC}\) nên AN//BC.
Cho đường tròn ( O) và dây AB cố định, điểm M tuỳ ý thay đổi trên đoạn thẳng AB. Qua A, M dựng đường tròn tâm I tiếp xúc với đường tròn (O) tại A. Quan B, M dựng đường tròn tâm J tiếp xúc với (O) tại B. Hai đường tròn tâm I và tâm J cắt nhau tại điểm thứ hai là N. C/m MN luôn đi qua một điểm cố định.
Cho nửa đường tròn tâm O đường kính AB. Một điểm C di chuyển trên AO(khác A,O).Đường thẳng đi qua C vuông góc với AO cắt nửa đường tròn đã cho tại D.trên cung BD lấy điểm M(M Khác B và D).Tiếp tuyến của nửa đường tròn tại M cắt CD tại E. Gọi F là giao điểm của AM và CD.K là giao điểm của BM và CD.Gọi tâm Đường tròn ngoại tiếp tam giác AKF là I.Chứng minh rằng I luôn nằm trên một đường thẳng cố định khi C di chuyển trên AO.
Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.
Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA
Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK
Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM
= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA
=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A
=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)
Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)
Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const
Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi
=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi
Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).
Cho đường tròn (O) có đường kính AB cố định, M là 1 điểm thuộc đường tròn (M khác A,B). Các tiếp tuyến của (O) tai A và M cắt nhau tại C. Đường tròn (I) qua M và tiếp xúc với đường thẳng AC tại C, CD là đường kính của (I). Chứng minh
a, O,M,D thẳng hàng
b, Tam giác COD cân
c, Đường thẳng qua D và vuông góc với BC luôn đi qua 1 điểm cố định khi M di động trên (O)
Cho đường tròn tâm O và dây cung BC không đi qua O. Một điểm A chuyển động trên dường tròn (A khác B, C). Gọi M là trung điểm của đoạn AC, H là chân đường vuông góc hạ từ M xuống đường thẳng AB. Chứng minh rằng H nằm trên một đường tròn cố định.
Cho đường tròn tâm O và dây AB, điểm M di động trên cung lớn AB các đường cao AE,BF của tam giác ABM cắt nhau ở H vẽ đường tròn tâm H bán kính HM cắt MA,MB theo thứ tự tại E, D. CMR: ĐƯờng thẳng kẻ từ M vuông góc với CD luôn đi qua một điểm cố định
cho nửa đường tròn tâm O đường kính AB .Một điểm C cố định thuộc đoạn thẳng AO (C khác A và O) . Đường thẳng đi qua điểm C và vuông góc với AO cắt nửa đường tròn đã cho tại D. trên cung BD lấy điểm M (M khác B và tiếp tuyến M khác D ) của nửa đường tròn đã cho tại M cắt đường thẳng CD .Gọi F là giao điểm của AM và CD.
a)chứng minh rằng tứ giác BCFM là tứ giác nội tiếp đường tròn. Tìm tâm của đường tròn đó
b)chứng minh ME=MF