Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trung Nguyen
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2019 lúc 0:20

Biến đổi tương đương, do mọi hạng tử đều dương nên:

\(\frac{x^2+y^2+2}{\left(1+x^2\right)\left(1+y^2\right)}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\left(1+xy\right)\left(x^2+y^2+2\right)\ge2\left(x^2y^2+x^2+y^2+1\right)\)

\(\Leftrightarrow x^2+y^2+2+x^3y+xy^3+2xy=2x^2y^2+2x^2+2y^2+2\)

\(\Leftrightarrow x^3y+xy^3-2x^2y^2-\left(x^2-2xy+y^2\right)\ge0\)

\(\Leftrightarrow xy\left(x-y\right)^2-\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\) luôn đúng do \(xy\ge1\Rightarrow xy-1\ge0\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}xy=1\\x=y\end{matrix}\right.\)

QUan
Xem chi tiết
Thắng Nguyễn
20 tháng 10 2016 lúc 17:14

sửa đề\(\frac{1}{x^2+1}+\frac{1}{y^2+1}\ge\frac{2}{1+xy}\)

\(\Leftrightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}-\frac{2}{1+xy}\ge0\)

\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)

\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)( luôn đúng với \(x,y\ge1\))

Đpcm

Nàng tiên cá
Xem chi tiết
Kiệt Nguyễn
16 tháng 2 2020 lúc 9:27

Ta có: \(VT-VP=\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)(đúng với \(xy\ge1\))

Đẳng thức xảy ra khi a = b = 1

Khách vãng lai đã xóa
vietdat vietdat
Xem chi tiết
Bui Huyen
6 tháng 8 2019 lúc 16:21

Áp dụng cô si

\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\\\frac{1}{c}+\frac{1}{b}\ge2\sqrt{\frac{1}{cb}}\\\frac{1}{a}+\frac{1}{c}\ge2\sqrt{\frac{1}{ac}}\end{cases}}\)\(\Rightarrow\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}\)

\("="\Leftrightarrow a=b=c=0\)

\(\hept{\begin{cases}\sqrt{x}\le\frac{x+1}{2}\\\sqrt{y-1}\le\frac{y-1+1}{2}\\\sqrt{z-2}\le\frac{z-2+1}{2}\end{cases}}\)\(\Rightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+1+y-1+1+z-2+1}{2}\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\le\frac{x+y+z}{2}\)

\("="\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)

l҉o҉n҉g҉ d҉z҉
18 tháng 10 2020 lúc 22:23

Sửa ĐK của c) : a, b, c > 0

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}=\frac{2}{\sqrt{ab}}\)

\(\frac{1}{b}+\frac{1}{c}\ge2\sqrt{\frac{1}{bc}}=\frac{2}{\sqrt{bc}}\)

\(\frac{1}{c}+\frac{1}{a}\ge2\sqrt{\frac{1}{ca}}=\frac{2}{\sqrt{ca}}\)

Cộng các vế tương ứng

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\ge\frac{2}{\sqrt{ab}}+\frac{2}{\sqrt{bc}}+\frac{2}{\sqrt{ca}}\)

=> \(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)

=> đpcm

Đẳng thức xảy ra khi a = b = c

Khách vãng lai đã xóa
KCLH Kedokatoji
18 tháng 10 2020 lúc 22:31

c) Cách khác: Áp dụng bổ đề: \(x^2+y^2+z^2\ge xy+yz+zx\forall x,y,z>0\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\left(\frac{1}{\sqrt{a}}\right)^2+\left(\frac{1}{\sqrt{b}}\right)^2+\left(\frac{1}{\sqrt{c}}\right)^2\ge\frac{1}{\sqrt{a}}.\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}.\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}.\frac{1}{\sqrt{a}}\)

\(=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\)

Dấu "=" xảy ra khi \(a=b=c>0\)

Khách vãng lai đã xóa
Hiếu Lê
Xem chi tiết
Tran Le Khanh Linh
19 tháng 8 2020 lúc 21:08

Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)

Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)

Áp dụng Bất Đẳng Thức Cauchy ta có

\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)

\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)

Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)

\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)

Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)

Khách vãng lai đã xóa
Trịnh Quỳnh Nhi
Xem chi tiết
vũ tiền châu
1 tháng 1 2018 lúc 23:27

Cái này biến đổi tương đương nhé, t có mỗi cách đó !

ta có BĐT cần chứng minh 

\(\Leftrightarrow\left(1+xy\right)\left(1+x^2\right)+\left(1+xy\right)\left(1+y^2\right)\ge2\left(1+y^2\right)\left(1+x^2\right)\)

\(\Leftrightarrow1+x^2+xy+x^3y+1+y^2+xy+y^3\ge2\left(1+x^2+y^2+x^2y^2\right)\)

\(\Leftrightarrow2xy+x^3y+xy^3-x^2-y^2-2x^2y^2\ge0\)

\(\Leftrightarrow xy\left(x-y\right)^2-\left(x-y\right)^2\ge0\Leftrightarrow\left(xy-1\right)\left(x-y\right)^2\ge0\)

bđt này luôn đúng với \(x,y\ge1\)

dấu = xảy ra <=> x=y >=1

^_^

chọn của vũ tiền châu nhé

nhớ đêý

cảm ơn 

t i c k nhé

kí tên hà ơi quá khắm :vvv

Khách vãng lai đã xóa
Dương
Xem chi tiết
Kiệt Nguyễn
13 tháng 3 2021 lúc 7:36

Theo giả thiết xy + yz + zx = 1 nên ta có: \(VT=\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}=\frac{1}{xy+yz+zx+x^2}+\frac{1}{xy+yz+zx+y^2}+\frac{1}{xy+yz+zx+z^2}=\frac{1}{\left(x+y\right)\left(x+z\right)}+\frac{1}{\left(y+x\right)\left(y+z\right)}+\frac{1}{\left(z+x\right)\left(z+y\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Theo bất đẳng thức Cauchy-Schwarz: \(\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^2\le\left(x+y+z\right)\left(\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\right)=\left(x+y+z\right)\left(\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}\right)=\frac{2\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(\Rightarrow\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\le\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)Ta cần chứng minh: \(\frac{2\left(x+y+z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{4\left(x+y+z\right)}{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)\)

hay \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\le\frac{3}{2}\)

Bất đẳng thức cuối đúng theo AM - GM do: \(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+z}.\frac{y}{x+y}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\le\frac{\left(\frac{x}{x+y}+\frac{x}{x+z}\right)+\left(\frac{y}{y+z}+\frac{y}{x+y}\right)+\left(\frac{z}{z+x}+\frac{z}{z+y}\right)}{2}=\frac{3}{2}\)Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

Khách vãng lai đã xóa
vu tien dat
Xem chi tiết