Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2020 lúc 20:13

Ta có: \(x^2-2y^2=xy\)

\(\Leftrightarrow x^2-xy-2y^2=0\)

\(\Leftrightarrow x^2-2xy+xy-2y^2=0\)

\(\Leftrightarrow x\left(x-2y\right)+y\left(x-2y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)

Vì \(x+y\ne0\) nên x-2y=0

hay x=2y

Thay x=2y vào biểu thức \(A=\dfrac{x-y}{x+y}\), ta được: 

\(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

Vậy: \(A=\dfrac{1}{3}\)

Nguyễn Hữu Huy
Xem chi tiết
nnh
5 tháng 1 2018 lúc 20:04

chs bb ak

Ta có: \(x^2-2y^2=xy\)

\(\Leftrightarrow x^2-y^2-y^2-xy=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

Mà \(x+y\ne0\)

\(\Rightarrow x-2y=0\)

\(\Rightarrow x=2y\)

\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

Darlingg🥝
2 tháng 8 2019 lúc 8:28

Đặc P ta có

P= x2 - 2y2 =xy

<=> x2 - y2 - y2 -xy =0

=> (x-1) (x+y) -y (x+y) -1

=> (x+y_(x-2y)=0

Vậy 

x+y #0

=> x- 2y =0

=>x=2y

=>P=2y -y trên 2y + y =y trên 3y =1/3

Ngô Hoài Thanh
Xem chi tiết
Min
2 tháng 1 2016 lúc 17:12

\(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\)

\(\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)

\(\Rightarrow x-y=y\)

\(x=2y\)

Thay \(x=2y\)

\(\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)

Nguyễn Quốc Cường
2 tháng 1 2016 lúc 17:00

3 đó các bạn

 

Trương Lan Anh
Xem chi tiết
ST
13 tháng 7 2018 lúc 8:29

\(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\Leftrightarrow x^2+xy-2xy-2y^2=0\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)

Mà \(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)

\(\Rightarrow A=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

huy chiến
7 tháng 12 2018 lúc 12:33

x2  - 2y2 = xy <=> x2 - xy - 2y2 = 0 <=> x2 + xy - 2xy - 2y2 = 0 <=> x (  x + y ) - 2y 

( x + y ) = 0 <=> ( x - 2y ) ( x + y ) = 0

mà x + y \(\ne\) 0 => x - 2y = 0 => x = 2y

=> A = \(\frac{2y-y}{2y+y}\) = \(\frac{y}{3y}\) = \(\frac{1}{3}\)

Nguyễn Công Minh Hoàng
Xem chi tiết
FAH_buồn
19 tháng 5 2019 lúc 16:34

Ta có:

      \(x^2-2y^2-xy=0\)

       <=>\(\left(x^2-y^2\right)-\left(y^2-xy\right)=0\)

       <=>\(\left(x-y\right)\left(x-y\right)-y\left(x+y\right)=0\)

       <=> \(\left(x-y\right)\left(x-2y\right)=0\)

       <=> x - 2y = 0 ( do x+y khác 0 )

       <=> x =2y

Thay  vào đề bài ta có

Q=\(\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

Từ \(x^2-2y^2=xy\Rightarrow x^2-2y^2-xy=0\)

\(\Rightarrow\left(x^2-y^2\right)-\left(y^2+xy\right)=0\)

\(\Rightarrow\left(x-y\right).\left(x-y\right)-y.\left(x-y\right)=0\)

\(\Rightarrow\left(x-y\right).\left(x-2y\right)=0\)

\(\Rightarrow x=2y\)

Thay vào đã dc:\(Q=\frac{1}{3}\)

Nguyễn Công Minh Hoàng
Xem chi tiết
zZz Cool Kid_new zZz
19 tháng 5 2019 lúc 15:54

Ta có:\(x^2-2y^2=xy\)

\(\Rightarrow x^2-xy-2y^2=0\)

\(\Rightarrow x^2+xy-2xy-2y^2=0\)

\(\Rightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(x-2y\right)=0\)

\(\Rightarrow x-2y=0\)

\(\Rightarrow x=2y\)

Thay vào Q,ta có:

\(Q=\frac{x-y}{x+y}=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

Trần Thu Phương
Xem chi tiết
Đinh Đức Hùng
18 tháng 7 2018 lúc 16:46

Từ đề bài \(\Rightarrow\)\(x^2-2y^2-xy=0\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

Mà \(x+y\ne0\Rightarrow x-2y=0\Rightarrow x=2y\)

\(\Rightarrow P=\frac{2y-y}{2y+y}=\frac{1}{3}\)

Trần Thùy Dương
18 tháng 7 2018 lúc 17:00

Vì \(x^2-2y^2=xy\) 

\(\Leftrightarrow x^2-xy-y^2=0\)

\(\Leftrightarrow\left(x-y\right)^2-y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

Theo đề bài thì có : 

\(x+y\ne0\)

\(\Rightarrow x-2y=0\)

\(\Leftrightarrow x=2y\)

Từ đó ta lại có :

\(P=\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

Vậy .......

Vũ Văn Huy
18 tháng 7 2018 lúc 16:52

ta có 

          x2-2y2=xy

<=>  x2 -xy -2y2 =0

<=> (x-2y)(x+y)=0

=>\(\orbr{\begin{cases}x=2y\\x+y=0\left(loại\right)\end{cases}}\)

nếu x=2y thì P=1/3

Trần Đức
Xem chi tiết
OoO Pipy OoO
16 tháng 8 2016 lúc 9:08

\(x^2-2y^2=xy\)

\(x^2-xy-2y^2=0\)

\(x^2+2xy+y^2-3xy-3y^2=0\)

\(\left(x+y\right)^2-3y\times\left(x+y\right)=0\)

\(\left(x+y\right)\left(x+y-3y\right)=0\)

Th1:

\(x-2y=0\)

Th2:

\(x+y=0\)

Vậy \(\frac{x+y}{x-y}=\frac{0}{x-y}=0\)

nguyenvankhoi196a
6 tháng 11 2017 lúc 15:43

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web. 

mong các bn đừng làm như vậy nha

lê thị thu huyền
Xem chi tiết
alibaba nguyễn
2 tháng 8 2017 lúc 15:20

Bạn dưới làm đang đúng tới cuối sai mất.

T làm cách khác nhé.

\(x^2-2y^2=xy\)

\(\Leftrightarrow\frac{x^2}{y^2}-2=\frac{x}{y}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{x}{y}=-1\left(l\right)\\\frac{x}{y}=2\end{cases}}\)

Ta có:

\(A=\frac{x-y}{x+y}=\frac{\frac{x}{y}-1}{\frac{x}{y}+1}=\frac{2-1}{2+1}=\frac{1}{3}\)

l҉o҉n҉g҉ d҉z҉
2 tháng 8 2017 lúc 11:55

Ta có : x2 - 2y2 = xy

=> x2 - 2y2 - xy = 0

<=> x2 - 2xy + xy - 2y2 = 0

<=> x(x - 2y) + y(x - 2y) = 0

<=> (x + y)(x - 2y) = 0

\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x-2y=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x=2y\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2y+y=0\\x=2y\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3y=0\\x=2y\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\\x=0\end{cases}}\)