Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kuramajiva
Xem chi tiết
Nguyễn Bá Minh
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Đoàn Thị Huyền Đoan
1 tháng 11 2016 lúc 23:48

\(\frac{x^2}{\sqrt{3x-2}}-\frac{\sqrt{\left(3x-2\right)\left(3x-2\right)}}{\sqrt{3x-2}}=1-x\Leftrightarrow\frac{x^2-3x+2}{\sqrt{3x-2}}-1+x=0\Leftrightarrow x^2-3x+2-\sqrt{3x-2}+x\sqrt{3x-2}=0\Leftrightarrow\left(x-2\right)\left(x-1\right)+\sqrt{3x-2}\left(x-1\right)=\left(x-1\right)\left(x-2+\sqrt{3x-2}\right)\Leftrightarrow\hept{\begin{cases}x-1=0\\x-2+\sqrt{3x-2}=0\end{cases}\Leftrightarrow}x=1\)

Nguyễn Ngọc Linh Nhi
Xem chi tiết
phan tuấn anh
4 tháng 10 2016 lúc 17:07

ĐKXĐ: z>0

pt<=> \(\frac{x^3+3x^2\sqrt[3]{3x-2}-12x+\sqrt{x}-\sqrt{x}-8}{x}=0\)

<=> \(x^3+3x^2\sqrt[3]{3x+2}-12x-8=0\)

<=> \(3x^2\sqrt[3]{3x-2}-6x^2+x^3-6x^2+12x-8=0\)

<=> \(3x^2\left(\sqrt[3]{3x-2}-2\right)+\left(x-2\right)^3=0\)

<=> \(3x^2\cdot\frac{3x-2-8}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^3=0\)

<=> \(\left(x-2\right)\left(\frac{9x^2}{\left(\sqrt[3]{3x-2}\right)^2+2\sqrt[3]{3x-2}+4}+\left(x-2\right)^2\right)=0\)

<=> \(x=2\)( vì cái trong ngoặc thứ 2 luôn dương vs mọi x>0)

vậy x=2

Bùi Thị Vân
4 tháng 10 2016 lúc 17:10

Một bài làm rất hay !

phan tuấn anh
4 tháng 10 2016 lúc 19:22

hihi thank ad vân ..

Nguyễn Hà Anh
Xem chi tiết
Huy Phạm Văn
Xem chi tiết
hong doan
Xem chi tiết
Ngô Vũ Quỳnh Dao
7 tháng 12 2017 lúc 8:42

ĐIều kiện x >2/3

\(\Leftrightarrow\frac{x^2+\left(\sqrt{3x-2}\right)^2}{x\sqrt{3x-2}}=2\)

\(\Leftrightarrow x^2+\left(\sqrt{3x-2}\right)^2=2x\sqrt{3x-2}\)

\(\Leftrightarrow x^2+\left(\sqrt{3x-2}\right)^2-2x\sqrt{3x-2}=0\)

\(\Leftrightarrow\left(x-\sqrt{3x-2}\right)^2=0\)

\(\Leftrightarrow x-\sqrt{3x-2}=0\Leftrightarrow x=\sqrt{3x-2}\)

vì ta bình phương 2 vế ta có:

x= 3x-2

,<=> x2-3x+2 = 0

ta có x1= 1 (thỏa mãn) ; x2 = 2 (thỏa mãn)

Vậy:......................................

mon wang
24 tháng 10 2017 lúc 21:42

Áp dụng bđt Côsi

Phan Nghĩa
31 tháng 8 2020 lúc 9:06

\(\frac{x}{\sqrt{3x-2}}+\frac{\sqrt{3x-2}}{x}=2\left(đk:x>\frac{2}{3}\right)\)

Sử dụng bất đẳng thức AM-GM ta có : 

\(\frac{x}{\sqrt{3x-2}}+\frac{\sqrt{3x-2}}{x}\ge2\sqrt{\frac{x\sqrt{3x-2}}{\sqrt{3x-2}x}}=2\)

Đẳng thức xảy ra khi và chỉ khi \(\frac{x}{\sqrt{3x-2}}=\frac{\sqrt{3x-2}}{x}\)

\(< =>x^2=3x-2< =>x^2-3x+2=0\)

Ta dễ thấy \(a+b+c=1-3+2=0\)

Nên phương trình trên sẽ có nghiệm là \(\left\{1;2\right\}\)

Khách vãng lai đã xóa
Phạm Thanh Trà
Xem chi tiết
Nguyen Thi Trinh
27 tháng 5 2017 lúc 20:56

\(\Leftrightarrow5x^3+3x^2+3x-2=\left(\dfrac{x^2}{2}+3x-\dfrac{1}{2}\right)^2\)

\(\Leftrightarrow5x^3+3x^2+3x-2=\dfrac{x^4}{4}+x^2\left(3x-\dfrac{1}{2}\right)+\left(3x-\dfrac{1}{2}\right)^2\)

\(\Leftrightarrow5x^3+3x^2+3x-2=\dfrac{x^4}{4}+3x^3-\dfrac{x^2}{2}+9x^2-3x+\dfrac{1}{4}\)

\(\Leftrightarrow20x^3+12x^2+12x-8=x^4+12x^3-2x^2+36x^2-12x+1\)

\(\Leftrightarrow x^4-8x^3+22x^2-24x+9=0\)

\(\Leftrightarrow\left(x^4-x^3\right)-\left(7x^3-7x^2\right)+\left(15x^2-15x\right)-\left(9x-9\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3-7x^2+15x-9\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(x^3-x^2\right)-\left(6x^2-6x\right)+\left(9x-9\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-1\right)\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x-3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy pt có nghiệm \(x=\left\{1;3\right\}\)

phạm thanh nga
Xem chi tiết