Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 23:31

a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có

góc E chung

=>ΔBDE đồng dạng với ΔDCE

b: BD=căn 8^2+6^2=10cm

BE=10^2/6=100/6=50/3cm

EC=DC^2/BC=8^2/6=32/3cm

Xét ΔEBD có CH//BD

nên CH/BD=EC/EB

=>CH/10=32/50=16/25

=>CH=160/25=6,4cm

Thị Thu Thảo Lê
Xem chi tiết

a: Áp dụng định lí Pytago vào ΔBDC vuông tại C, ta được:

\(D B ^2 = B C ^2 + C D ^2\)

\(⇔ D B ^2 = 12 ^2 + 9 ^2 = 225\)

hay DB=15(cm)

Xét ΔBDC có 

BE là đường phân giác ứng với cạnh DC

nên 

Hoàn Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 3 2023 lúc 22:52

a: Xét ΔBDE vuông tại D và ΔDCE vuông tại C có

góc E chung

=>ΔBDE đồng dạng với ΔDCE

b: Xét ΔHDC vuông tại H và ΔDBE vuông tại D có

góc HDC=góc DBE

=>ΔHDC đồng dạng với ΔDBE

=>DH/DB=CH/DE

=>DH*DE=CB*CH=DC^2

c: DC^2=CH*DB

=>CH*10=8^2=64

=>CH=6,4cm

\(DH=\sqrt{8^2-6.4^2}=4.8\left(cm\right)\)

=>DE=8^2/4,8=40/3(cm)

=>CE=32/3(cm)

Xét ΔHCE vuông tại H và ΔCDE vuông tại C có

góc HEC chung

=>ΔHCE đồng dạng với ΔCDE

=>\(\dfrac{S_{HCE}}{S_{CDE}}=\left(\dfrac{CE}{DE}\right)^2=\left(\dfrac{32}{3}:\dfrac{40}{3}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)

Do Quang Duy
Xem chi tiết
Nguyễn Khôi Nguyên (^人^...
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 11 2021 lúc 21:03

a: Xét tứ giác AKCI có

AK//CI

AI//CK

Do đó: AKCI là hình bình hành

Lê Hà Phương
Xem chi tiết
nhattien nguyen
4 tháng 1 2022 lúc 11:38

bạn tham khảo nha

https://cdn.lazi.vn/storage/uploads/edu/answer/1628930843_lazi_652558.jpg

nguyễn thành đạt
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 19:17

Bài 3:

a: Ta có: AD+DB=AB

AE+EC=AC

mà DB=EC và AB=AC

nên AD=AE

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

Xét tứ giác BDEC có DE//BC

nên BDEC là hình thang

Hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)

nên BDEC là hình thang cân

b: Để BD=DE=EC thì BD=DE và DE=EC

BD=DE thì ΔDBE cân tại D

=>\(\widehat{DBE}=\widehat{DEB}\)

mà \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong, DE//BC)

nên \(\widehat{DBE}=\widehat{EBC}\)

=>\(\widehat{ABE}=\widehat{EBC}\)

=>BE là phân giác của góc ABC

=>E là chân đường phân giác kẻ từ B xuống AC

Xét ΔEDC có ED=EC

nên ΔEDC cân tại E

=>\(\widehat{EDC}=\widehat{ECD}\)

mà \(\widehat{EDC}=\widehat{DCB}\)(hai góc so le trong, DE//BC)

nên \(\widehat{ECD}=\widehat{DCB}\)

=>\(\widehat{ACD}=\widehat{BCD}\)

=>CD là phân giác của góc ACB

=>D là chân đường phân giác từ C kẻ xuống AB

Bài 2:

a: Ta có: ABCD là hình bình hành

=>AB//CD và AB=CD(1)

Ta có: M là trung điểm của AB

=>\(AM=MB=\dfrac{AB}{2}\left(2\right)\)

Ta có: N là trung điểm của CD

=>\(NC=ND=\dfrac{CD}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra AM=MB=NC=ND

Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

b: Ta có AMCN là hình bình hành

=>AN//CM

Xét ΔDFC có

N là trung điểm của DC

NE//FC

Do đó: E là trung điểm của DF

=>DE=EF(4)

Xét ΔABE có

M là trung điểm của BA

MF//AE

Do đó: F là trung điểm của BE

=>BF=FE(5)

Từ (4) và (5) suy ra BF=FE=ED

Phan Hồng Anh
Xem chi tiết
Nguyễn Ngọc Anh Minh
13 tháng 5 2022 lúc 8:58

A B C D O E H K

a/ Xét 2 tg vuông BDE và tg vuông DCE có

\(\widehat{DEB}\) chung

\(\widehat{DBE}=\widehat{CDE}\) (cùng phụ với \(\widehat{DEB}\) )

=> tg BDE đồng dạng với tg DCE (g.g.g)

b/ Xét tg vuông DCE có

\(DC^2=DH.DE\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông DHC và tg vuông BDE có

 \(\widehat{DCH}=\widehat{DEB}\) (cùng phụ với \(\widehat{CDE}\) )

=> tg DHC đồng dạng với tg BDE

\(\Rightarrow\dfrac{DH}{DB}=\dfrac{CH}{DE}\Rightarrow DH.DE=CH.DB\)

\(\Rightarrow DC^2=CH.DB\)

c/

Ta có

\(BD\perp DE;CH\perp DE\) => CH//BD (cùng vuông góc với DE)

\(\Rightarrow\dfrac{KH}{OD}=\dfrac{KC}{OB}\) (talet) \(\Rightarrow\dfrac{KH}{KC}=\dfrac{OD}{OB}\)

Mà OD=OB (trong HCN hai đường chéo cắt nhau tại trung điểm mỗi đường)

\(\Rightarrow\dfrac{KH}{KC}=\dfrac{OD}{OB}=1\Rightarrow KH=KC\) => K là trung điểm của HC

Xét tg vuông BCD có

\(DB=\sqrt{BC^2+CD^2}=\sqrt{6^2+8^2}=10cm\)

Ta có

\(DC^2=CH.DB\Rightarrow CH=\dfrac{DC^2}{DB}=\dfrac{8^2}{10}=6,4cm\)

\(\dfrac{S_{EHC}}{S_{EDB}}=\dfrac{\dfrac{EH.CH}{2}}{\dfrac{ED.DB}{2}}=\dfrac{EH.CH}{ED.DB}=k\)

Ta có

CH//DB (cmt)\(\Rightarrow\dfrac{EH}{ED}=\dfrac{CH}{DB}\)

\(\Rightarrow k=\left(\dfrac{CH}{DB}\right)^2=\left(\dfrac{6,4}{10}\right)^2=\left(\dfrac{4}{5}\right)^4\)

 

 

Péo Péo
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 8 2021 lúc 14:01

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:

\(DH\cdot DB=AD^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔADK vuông tại D có DH là đường cao ứng với cạnh huyền AK, ta được:

\(AH\cdot AK=AD^2\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(DH\cdot DB=AH\cdot AK\)