cho a/b = c/d chung minh rang a^2018 + c^2018 / b^2018 + d^2018
cho a+b=c+d
va a^2+b^2=c^2+d^2
chung minh rang
a^2018+b^2018=c^2018+d^2018
cho a+b=c+d
va a^2+b^2=c^2+d^2
chung minh rang
a^2018+b^2018=c^2018+d^2018
cho a+b=c+d
a^2+b^2=c^2+d^2
chung minh a^2018+b^2018=c^2018+b^2018
Cho \(\frac{a}{b}=\frac{c}{d}\)(b,d ≠ 0; b≠ d). Chứng minh rằng : \(\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có
\(VT:\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{b^{2018}\cdot k^{2018}+d^{2018}\cdot k^{2018}}{b^{2018}+d^{2018}}=\frac{k^{2018}\left(b^{2018}+d^{2018}\right)}{b^{2018}+d^{2018}}=k^{2018}\)
\(VP:\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{\left(bk+dk\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{k^{2018}\cdot\left(b+d\right)^{2018}}{\left(b+d\right)^{2018}}=k^{2018}\)
\(\Rightarrow VT=VP\)
Hay \(\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\left(đpcm\right)\)
Cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh: \(\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) Chứng minh rằng:
a, \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
b \(\dfrac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\dfrac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (1)
a) Từ (1) ta có:
\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\) (2)
\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\) (3)
Từ (2) và (3) suy ra \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
b) Từ (1) ta có:
\(\dfrac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\dfrac{b^{2018}.k^{2018}+d^{2018}.k^{2018}}{b^{2018}+d^{2018}}=\dfrac{k^{2018}\left(b^{2018}+d^{2018}\right)}{b^{2018}+d^{2018}}=k^{2018}\) (4)
\(\dfrac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}=\dfrac{\left(bk+dk\right)^{2018}}{\left(b+d\right)^{2018}}=\dfrac{\left[k\left(b+d\right)\right]^{2018}}{\left(b+d\right)^{2018}}=k^{2018}\) (5)
Từ (4) và (5) suy ra \(\dfrac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\dfrac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\)
Cho \(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{b+d+a}=\frac{d}{a+b+c}\)
Tính \(A=\frac{a^{2018}}{b^{2018}}+\frac{b^{2018}}{c^{2018}}+\frac{c^{2018}}{d^{2018}}+\frac{d^{2018}}{a^{2018}}\)
cho \(\frac{a}{b}=\frac{c}{d}\left(b,d\ne0;b\ne d,-d\right)\)
Chứng minh \(\left(\frac{a-b}{c-d}\right)^{2018}=\frac{a^{2018}+b^{2018}}{c^{2018}+d^{2018}}\)
với c=0=>a=0 đẳng thức đúng
với c khác 0 ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{\left(a-b\right)^{2018}}{\left(c-d\right)^{2018}}=\frac{a^{2018}}{c^{2018}}=\frac{b^{2018}}{d^{2018}}=\frac{a^{2018}+b^{2018}}{c^{2018}+d^{2018}}\)
=>\(\frac{\left(a-b\right)^{2018}}{\left(c-d\right)^{2018}}=\frac{a^{2018}+b^{2018}}{c^{2018}+d^{2018}}\)
Cho a/b =c/d (b,d ≠ 0, b≠ d) . CM: a2018 + c2018/ b2018 + d2018 = (a+c)2018 / (b+d)2018