Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Wakanda forever
Xem chi tiết
Nguyễn Anh Dũng An
18 tháng 11 2019 lúc 21:40

Bài 2:

\(\frac{1}{\sqrt[3]{81}}\cdot P=\frac{1}{\sqrt[3]{9\cdot9\cdot\left(a+2b\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(b+2c\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(c+2a\right)}}\)

\(\ge\frac{3}{a+2b+9+9}+\frac{3}{b+2c+9+9}+\frac{3}{c+2a+9+9}\ge3\left(\frac{9}{3a+3b+3c+54}\right)=\frac{1}{3}\)

\(\Rightarrow P\ge\sqrt[3]{3}\)

Dấu bằng xẩy ra khi a=b=c=3

Khách vãng lai đã xóa
Lê Tài Bảo Châu
18 tháng 11 2019 lúc 21:43

Bài 1: 

 \(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)

Theo bđt côsi-shaw ta luôn có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge\frac{25}{x+y+z+t+k}\)(x=y=z=t=k>0 ) (*)

\(\Leftrightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

Áp dụng bđt AM-GM ta có:

 \(\hept{\begin{cases}x+y+z+t+k\ge5\sqrt[5]{xyztk}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge5\sqrt[5]{\frac{1}{xyztk}}\end{cases}}\)

\(\Rightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

\(\Rightarrow\)(*) luôn đúng

Từ (*) \(\Rightarrow\frac{1}{25}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\le\frac{1}{x+y+z+t+k}\)

Ta có: \(P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\)

Mà \(\frac{1}{2a+2b+c}=\frac{1}{a+a+b+b+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\frac{1}{a+2b+2c}=\frac{1}{a+b+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\frac{1}{2a+b+2c}=\frac{1}{a+a+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow P\le\frac{1}{25}\left[5.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=1\)

\(\Rightarrow P\le1\left(đpcm\right)\)Dấu"="xảy ra khi a=b=c\(=\frac{3}{5}\)

      

Khách vãng lai đã xóa
Lê Tài Bảo Châu
18 tháng 11 2019 lúc 21:49

https://olm.vn/thanhvien/ankhunge

Làm sai rồi ạ

Khách vãng lai đã xóa
Thanhf
Xem chi tiết
alibaba nguyễn
11 tháng 11 2016 lúc 22:46

Lỗi rồi

Thắng Nguyễn
12 tháng 11 2016 lúc 12:13

Sửa đề: Tìm Max của \(\frac{1}{\sqrt{a^2+1}}+\frac{2}{\sqrt{b^2+4}}+\frac{3}{\sqrt{c^2+9}}\)  biết a,b,c>0 và 6a+3b+2c=abc

Nguyễn Tùng
Xem chi tiết
Incursion_03
3 tháng 2 2019 lúc 0:57

\(1,\hept{\begin{cases}10x^2+5y^2-2xy-38x-6y+41=0\left(1\right)\\3x^2-2y^2+5xy-17x-6y+20=0\left(2\right)\end{cases}}\)

Giải (1) : \(10x^2+5y^2-2xy-38x-6y+41=0\)

\(\Leftrightarrow10x^2-2x\left(y+19\right)+5y^2-6y+41=0\)

Coi pt trên là pt bậc 2 ẩn x

Có \(\Delta'=\left(y+19\right)^2-50y^2+60y-410\)

           \(=-49y^2+98y-49\)

           \(=-49\left(y-1\right)^2\)

pt có nghiệm \(\Leftrightarrow\Delta'\ge0\)

                      \(\Leftrightarrow-49\left(y-1\right)^2\ge0\)

                      \(\Leftrightarrow y=1\)

Thế vào pt (2) được x = 2

           

Incursion_03
3 tháng 2 2019 lúc 1:07

\(2,\)Đặt\(\left(a\sqrt{a};b\sqrt{b};c\sqrt{c}\right)\rightarrow\left(x;y;z\right)\left(x,y,z>0\right)\)

\(\Rightarrow xy+yz+zx=1\)

Khi đó \(P=\frac{x^4}{x^2+y^2}+\frac{y^4}{y^2+z^2}+\frac{z^4}{x^2+z^2}\)

Áp dụng bđt \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(x;y;z>0\right)\left(Cauchy-engel-type_3\right)\)được

\(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{2}\)

Áp dụng bđt x2 + y2 + z2 > xy + yz + zx (tự chứng minh) ta được

\(P\ge\frac{x^2+y^2+z^2}{2}\ge\frac{xy+yz+zx}{2}=\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}xy+yz+zx=1\\x=y=z\end{cases}}\)

                        \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

                        \(\Leftrightarrow\sqrt{a^3}=\sqrt{b^3}=\sqrt{c^3}=\frac{1}{\sqrt{3}}\)

                       \(\Leftrightarrow a^3=b^3=c^3=\frac{1}{3}\)

                       \(\Leftrightarrow a=b=c=\frac{1}{\sqrt[3]{3}}\)

Vậy \(P_{min}=\frac{1}{2}\Leftrightarrow a=b=c=\frac{1}{\sqrt[3]{3}}\)

Phạm Quang Tuấn
29 tháng 1 2019 lúc 0:07

Câu đầu thử xét delta đi rồi dùng công thức nghiệm sẽ tìm đc mối liên hệ x, y -> dễ

Ngô Duy Phúc
Xem chi tiết
Thắng Nguyễn
22 tháng 12 2017 lúc 18:30

a=b=c=2 thay vào ra min cái này là tay tui tự gõ ra a=b=c=2 chả có bước nào. còn chi tiết sau nhớ nhắc tui làm :D

Thắng Nguyễn
22 tháng 12 2017 lúc 19:04

Áp dụng BĐT Mincopxki và AM-GM có:

\(T=\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)

\(=\sqrt{\frac{81}{\left(a+b+c\right)^2}+\frac{\left(a+b+c\right)^2}{16}+\frac{15\left(a+b+c\right)^2}{16}}\)

\(=\sqrt{2\sqrt{\frac{81}{\left(a+b+c\right)^2}\cdot\frac{\left(a+b+c\right)^2}{16}}+\frac{15\cdot6^2}{16}}\)

\(=\sqrt{2\sqrt{\frac{81}{16}}+\frac{15\cdot6^2}{16}}=\frac{3\sqrt{17}}{2}\)

Khi \(a=b=c=2\)

Phương Trinh
Xem chi tiết
Anna Vũ
Xem chi tiết
Yim Yim
4 tháng 7 2018 lúc 9:34

\(a+bc=a\left(a+b+c\right)+bc=a^2+ab+ac+bc=\left(a+b\right)\left(a+c\right)\)

tương tự :

\(b+ac=\left(b+a\right)\left(b+c\right);c+ba=\left(b+c\right)\left(c+a\right)\)

\(P=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

áp dụng bất đẳng thức cauchy cho hai số dương 

\(\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

\(\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}\le\frac{1}{2}\left(\frac{b}{b+c}+\frac{b}{b+a}\right)\)

\(\frac{c}{\sqrt{\left(c+b\right)\left(c+a\right)}}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{c}{c+a}\right)\)

cộng vế theo vế

\(P\le1\)

Yim Yim
4 tháng 7 2018 lúc 9:36

\(P\le\frac{3}{2}\)

misu
Xem chi tiết
Nguyễn Gia Huy
Xem chi tiết
Phùng Minh Quân
2 tháng 2 2020 lúc 15:29

Có: \(4=\left(a+b\right)^2-\left(b-1\right)^2\le\left(a+b\right)^2\)\(\Rightarrow\)\(a+b\ge2\)

\(P=\frac{\frac{a^4}{a}+\frac{b^4}{b}}{ab}\ge\frac{\frac{\left(a^2+b^2\right)^2}{a+b}}{ab}\ge\frac{\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{a+b}}{ab}=\frac{\left(a+b\right)\left(a+b\right)^2}{4ab}\ge\frac{2\left(2\sqrt{ab}\right)^2}{4ab}=2\)

"=" \(\Leftrightarrow\)\(a=b=1\)

Khách vãng lai đã xóa
PHẠM THỊ KHÁNH LINH
Xem chi tiết