E lâu lâu e mới tìm được bài dễ, mời mọi người xơi
Cho \(\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}}\):. Tìm giá trị lớn nhất của:
\(P=\frac{bc}{\sqrt[4]{a^2+3}}+\frac{ca}{\sqrt[4]{b^2+3}}+\frac{ab}{\sqrt[4]{c^2+3}}\)
Bài 1: \(\hept{\begin{cases}a,b,c>0\\ab+bc+ca=5abc\end{cases}CMR:P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\le}1\)
Bài 2:\(\hept{\begin{cases}a,b,c>0\\a+b+c=9\end{cases}}\)Tìm GTNN \(P=\frac{1}{\sqrt[3]{a+2b}}+\frac{1}{\sqrt[3]{b+2c}}+\frac{1}{\sqrt[3]{c+2a}}\)
Bài 2:
\(\frac{1}{\sqrt[3]{81}}\cdot P=\frac{1}{\sqrt[3]{9\cdot9\cdot\left(a+2b\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(b+2c\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(c+2a\right)}}\)
\(\ge\frac{3}{a+2b+9+9}+\frac{3}{b+2c+9+9}+\frac{3}{c+2a+9+9}\ge3\left(\frac{9}{3a+3b+3c+54}\right)=\frac{1}{3}\)
\(\Rightarrow P\ge\sqrt[3]{3}\)
Dấu bằng xẩy ra khi a=b=c=3
Bài 1:
\(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)
Theo bđt côsi-shaw ta luôn có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge\frac{25}{x+y+z+t+k}\)(x=y=z=t=k>0 ) (*)
\(\Leftrightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)
Áp dụng bđt AM-GM ta có:
\(\hept{\begin{cases}x+y+z+t+k\ge5\sqrt[5]{xyztk}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge5\sqrt[5]{\frac{1}{xyztk}}\end{cases}}\)
\(\Rightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)
\(\Rightarrow\)(*) luôn đúng
Từ (*) \(\Rightarrow\frac{1}{25}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\le\frac{1}{x+y+z+t+k}\)
Ta có: \(P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\)
Mà \(\frac{1}{2a+2b+c}=\frac{1}{a+a+b+b+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\frac{1}{a+2b+2c}=\frac{1}{a+b+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\frac{1}{2a+b+2c}=\frac{1}{a+a+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow P\le\frac{1}{25}\left[5.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=1\)
\(\Rightarrow P\le1\left(đpcm\right)\)Dấu"="xảy ra khi a=b=c\(=\frac{3}{5}\)
https://olm.vn/thanhvien/ankhunge
Làm sai rồi ạ
Tìm mã của $\frac{1}{\sqrt{a^2+1}}+\frac{2}{\sqrt{b^2+4}}+\frac{3}{\sqrt{c^2+9}}$ biết \(\hept{\begin{cases}a>0,b>0,c>0\\6a+3b+2c=abc\end{cases}}\)
Thầy cô nào jup e nha.Em dốt bđt lắm
Sửa đề: Tìm Max của \(\frac{1}{\sqrt{a^2+1}}+\frac{2}{\sqrt{b^2+4}}+\frac{3}{\sqrt{c^2+9}}\) biết a,b,c>0 và 6a+3b+2c=abc
1,Giải hệ \(\hept{\begin{cases}10x^2+5y^2-2xy-38x-6y+41=0\\3x^2-2y^2+5xy-17x-6y+20\end{cases}}\)
2,Cho a,b,c > 0 thỏa mãn \(ab\sqrt{ab}+bc\sqrt{bc}+ca\sqrt{ca}=1\)
Tìm \(P_{min}=\frac{a^6}{a^3+b^3}+\frac{b^6}{b^3+c^3}+\frac{c^6}{c^3+a^3}\)
\(1,\hept{\begin{cases}10x^2+5y^2-2xy-38x-6y+41=0\left(1\right)\\3x^2-2y^2+5xy-17x-6y+20=0\left(2\right)\end{cases}}\)
Giải (1) : \(10x^2+5y^2-2xy-38x-6y+41=0\)
\(\Leftrightarrow10x^2-2x\left(y+19\right)+5y^2-6y+41=0\)
Coi pt trên là pt bậc 2 ẩn x
Có \(\Delta'=\left(y+19\right)^2-50y^2+60y-410\)
\(=-49y^2+98y-49\)
\(=-49\left(y-1\right)^2\)
pt có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow-49\left(y-1\right)^2\ge0\)
\(\Leftrightarrow y=1\)
Thế vào pt (2) được x = 2
\(2,\)Đặt\(\left(a\sqrt{a};b\sqrt{b};c\sqrt{c}\right)\rightarrow\left(x;y;z\right)\left(x,y,z>0\right)\)
\(\Rightarrow xy+yz+zx=1\)
Khi đó \(P=\frac{x^4}{x^2+y^2}+\frac{y^4}{y^2+z^2}+\frac{z^4}{x^2+z^2}\)
Áp dụng bđt \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(x;y;z>0\right)\left(Cauchy-engel-type_3\right)\)được
\(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{2}\)
Áp dụng bđt x2 + y2 + z2 > xy + yz + zx (tự chứng minh) ta được
\(P\ge\frac{x^2+y^2+z^2}{2}\ge\frac{xy+yz+zx}{2}=\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}xy+yz+zx=1\\x=y=z\end{cases}}\)
\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
\(\Leftrightarrow\sqrt{a^3}=\sqrt{b^3}=\sqrt{c^3}=\frac{1}{\sqrt{3}}\)
\(\Leftrightarrow a^3=b^3=c^3=\frac{1}{3}\)
\(\Leftrightarrow a=b=c=\frac{1}{\sqrt[3]{3}}\)
Vậy \(P_{min}=\frac{1}{2}\Leftrightarrow a=b=c=\frac{1}{\sqrt[3]{3}}\)
Câu đầu thử xét delta đi rồi dùng công thức nghiệm sẽ tìm đc mối liên hệ x, y -> dễ
Cho \(\hept{\begin{cases}a,b,c>0\\a+b+c\ge6\end{cases}}\)Tìm giá trị nhỏ nhất của biểu thức :
\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)
Mọi người giải chi tiết hộ mình ( cauchy nhé ), với làm rõ bước điểm rơi hộ mình !
a=b=c=2 thay vào ra min cái này là tay tui tự gõ ra a=b=c=2 chả có bước nào. còn chi tiết sau nhớ nhắc tui làm :D
Áp dụng BĐT Mincopxki và AM-GM có:
\(T=\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)
\(=\sqrt{\frac{81}{\left(a+b+c\right)^2}+\frac{\left(a+b+c\right)^2}{16}+\frac{15\left(a+b+c\right)^2}{16}}\)
\(=\sqrt{2\sqrt{\frac{81}{\left(a+b+c\right)^2}\cdot\frac{\left(a+b+c\right)^2}{16}}+\frac{15\cdot6^2}{16}}\)
\(=\sqrt{2\sqrt{\frac{81}{16}}+\frac{15\cdot6^2}{16}}=\frac{3\sqrt{17}}{2}\)
Khi \(a=b=c=2\)
Câu 1: cho hệ
\(\hept{\begin{cases}y^2=x^3-4x^2+ax\\x^2=y^3-4y^2+ay\end{cases}}\)
a) giải hệ khi a=0
b) tìm a để hệcos nghiệm duy nhất
Câu2: Cho hệ \(\hept{\begin{cases}\sqrt{x}+\sqrt{y}=1\\x\sqrt{x}+y\sqrt{y}=1-3m\end{cases}}\)
a) Giải hệ khi \(m=\frac{1}{4}\)
b) Tìm m để hệ có nghiệm
Câu 3: Giải hệ
\(\hept{\begin{cases}2x+\frac{1}{y}=\frac{3}{x}\\2y+\frac{1}{x}=\frac{3}{y}\end{cases}}\)
Mọi người giúp mình với nha!!!
\(Cho\hept{\begin{cases}a,b,c>0\\a+b+c=1\end{cases}}\)Tìm min \(P=\frac{a}{\sqrt{a+bc}}+\frac{b}{\sqrt{b+ca}}+\frac{c}{\sqrt{c+ba}}\)
\(a+bc=a\left(a+b+c\right)+bc=a^2+ab+ac+bc=\left(a+b\right)\left(a+c\right)\)
tương tự :
\(b+ac=\left(b+a\right)\left(b+c\right);c+ba=\left(b+c\right)\left(c+a\right)\)
\(P=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
áp dụng bất đẳng thức cauchy cho hai số dương
\(\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)
\(\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}\le\frac{1}{2}\left(\frac{b}{b+c}+\frac{b}{b+a}\right)\)
\(\frac{c}{\sqrt{\left(c+b\right)\left(c+a\right)}}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{c}{c+a}\right)\)
cộng vế theo vế
\(P\le1\)
GIẢI hpt:
\(a,\hept{\begin{cases}\frac{1}{\sqrt{x}}+\sqrt{2.\frac{1}{y}}=2\\\frac{1}{\sqrt{y}}+\sqrt{2.\frac{1}{x}}=2\end{cases}}\)
\(b,\hept{\begin{cases}x+y+2=4\\2xy-x^2=16\end{cases}}\)
\(c,\hept{\begin{cases}x\left(x-1\right)\left(x-2y\right)=0\\\frac{1}{x}-\frac{1}{y}=\frac{4}{3}\end{cases}}\)
cho\(\hept{\begin{cases}a,b>0\\a^2+2ab+2b=5\end{cases}}\)tìm giá trị lớn nhất của\(P=\frac{a^3+b^3}{ab}\)
Có: \(4=\left(a+b\right)^2-\left(b-1\right)^2\le\left(a+b\right)^2\)\(\Rightarrow\)\(a+b\ge2\)
\(P=\frac{\frac{a^4}{a}+\frac{b^4}{b}}{ab}\ge\frac{\frac{\left(a^2+b^2\right)^2}{a+b}}{ab}\ge\frac{\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{a+b}}{ab}=\frac{\left(a+b\right)\left(a+b\right)^2}{4ab}\ge\frac{2\left(2\sqrt{ab}\right)^2}{4ab}=2\)
"=" \(\Leftrightarrow\)\(a=b=1\)
a)\(\hept{\begin{cases}|x-2|+2|y-1|=9\\x+|y-1|=-1\end{cases}}\)
b)\(\hept{\begin{cases}x^2+y^2+\frac{2xy}{x+y}=1\\\sqrt{x+y}=x^2-y\end{cases}}\)
c)\(\hept{\begin{cases}x^2\\x^3-y^3=35\end{cases}+xy+y^2=7}\)
d)\(\hept{\begin{cases}\left(x+y\right)^2\\x-y-3=0\end{cases}-5\left(x+y\right)+4=0}\)
e)\(\hept{\begin{cases}x^2+\frac{4}{y^2}=4\\x-\frac{2}{y}-\frac{4x}{y}=-2\end{cases}}\)