Chứng minh rằng: A = \(2^{2^{4n+1}}+7\) là hợp số.
cho n thuộc N* .Chứng minh rằng các số sau là hợp số
a,A=(2^2^2n +1)+3 b,B=(2^2^4n+1)+7 c,C=(2^2^6n+2)+13
chứng minh rằng 32^4n+1+2 là hợp số
Ta có \(3^{2^{4n}+1}\) + 2 = 316n + 1 + 2 = 316n . 3 + 2 = ( 34 )4n . 3 + 2
= 814n . 3 + 2 = ( 814 )n . 3 + 2 = ( ...1 )n . 3 + 2 = ( ...1 ) . 3 + 2
= ( ...3 ) + 2 = ( ...5 )
Vì số có chữ số tận cùng là 5 chia hết cho 5 nên ( \(3^{2^{4n}+1}\) + 2 ) ⋮ 5
Chứng minh rằng: A = \(2^{3^{4n+1}}+3^{2^{4n+1}}+5\) là hợp số.
\(2^{3^{4n+1}}\) chia hết cho 2
\(3^{2^{4n+1}}\) ko chia hết cho 2 => nó là số lẻ
5 là số ko chia hết cho 2 => nó là số lẻ
mà số lẻ + lẻ = số chia hết cho 2
=> \(2^{3^{4n+1}}\)+ \(3^{2^{4n+1}}\) + 5 chia hết cho 2
=> HỢP SỐ
Chứng minh rằng: 2\(^{4n+1}\)+3\(^{4n}\)+2 là hợp số với mọi số nguyên dương n.
Với mọi số nguyên dương n. Ta có: 24n+1+34n+2=16n.2+81n+2 >5
Vì 16n có số tận cùng là 6; =>16n.2 có số tận cùng là 2
81n có số tận cùng là 1
=> 16n.2+81n+2 có số tận cùng là 5 mà 16n.2+81n+2 >5 suy ra 16n.2+81n+2 chia hết cho 5=> 24n+1+34n+2 chia hết cho 5=> 24n+1+34n+2là hợp số với mọi số nguyên dương n
Chứng minh rằng : Các số sau là phân số tối giản
a.2n+1/3n+2
b.2n+1/4n+3
c.4n+1/12n+7
chứng minh rằng ( 3^2^4n+1 ) +2 (n là số tự nhiên khác 0 ) là hợp số
cho \(n\in N^+\) Chứng minh rằng \(2^{2^{10n+1}}+19=2^{3^{4n+1}}+3^{2^{4n+1}}+5\)là hợp số
Cho n thuộc N* ,chứng minh rằng các số sau là hợp số:
a) A = 2^2^2n+1 + 3
b) B = 2^2^4n+1 + 7
c) C = 2^2^6n+2 + 13
a, chứng tỏ rằng 2 số 9n + 7 và 4n +3 là 2 số nguyên tố cùng nhau
b, chứng minh rằng với mọi số tự nhiên n thì n2 + n + 2016 không chia hết cho 5