Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bên nhau trọn đời
Xem chi tiết
Lê Thanh Minh
30 tháng 9 2018 lúc 6:44

Ta co n^2 chia 5 du 1 hoac du 4

=>n^4 chia 5 du 1 hoac du 4

\(\orbr{\begin{cases}n^4\equiv1\left(mod5\right)\\n^4\equiv4\left(mod5\right)\end{cases}}=>\orbr{\begin{cases}n^5\equiv n\left(mod5\right)\\n^4-4+5⋮5\end{cases}}\)\(=>\orbr{\begin{cases}n^5-n⋮5\\n^4\equiv1\left(mod5\right)\left(#\right)\end{cases}}\)

Theo (#) ta co:\(n^5\equiv n\left(mod5\right)\Rightarrow n^5-n⋮5\)

Vay n^5-n chia het cho 5

Đức Anh 2k9
Xem chi tiết
Mai Anh Nguyen
29 tháng 8 2021 lúc 22:14

Với n = 1 thì \(x^1\ge2.x^0=0\)

Giả sử đẳng thức đúng với n = k nghĩa là : \(x^k\ge\left(k+1\right).x^{k-1}\).

Ta phải chứng minh :

\(x^n\ge\left(n+1\right).x^{n-1}\)đúng với n = k + 1. Ta phải chứng minh \(x^{k+1}\ge\left[\left(k+1\right)+1\right].x^{\left(k-1\right)+1}=\left(k+2\right).x^k\)

\(=\left(x^k.k+2x^k+1\right)-1=\left(x^k+1\right)^2-1\le x^{k+1}\)

Vậy đẳng thức luôn đúng với mọi \(n\inℕ^∗\)

Khách vãng lai đã xóa
Huyen Mai
Xem chi tiết
Nguyễn Đăng Minh
17 tháng 9 2019 lúc 19:17

dùng đồng dư đi :v 

2^2^2n=16^n

có 16 đồng dư 2 mod 7

=>16^n đồng dư 2 mod 7

=>16^n+5 đồng dư 0 mod 7

Mai Anh Nguyen
Xem chi tiết
Big City Boy
Xem chi tiết
•Vεɾ_
Xem chi tiết
ha tuan anh
13 tháng 10 2019 lúc 7:20

có t i c k ko

•Vεɾ_
13 tháng 10 2019 lúc 8:52

ha tuan anh

Trả lời đc rồi hãng nói đến t i c k 

Tham gia diễn đàn hỏi đáp mục đích chính là để kiếm điểm à

•Vεɾ_
13 tháng 10 2019 lúc 8:53

và tôi cần lời giải chi tiết chứ ko phải tóm tắt nhá 

Tôi biết cậu hầu như toàn giải tắt chả có đầu có đuôi 

Ko cho ra đc lời giải thì thôi đừng tl làm j cả

Phương Trình Hai Ẩn
Xem chi tiết
Nghị Hoàng
7 tháng 7 2016 lúc 15:09

Đặt A=1.2+2.3+3.4+...+n(n+1)

=>3A=(3−0).1.2+(4−1).2.3+...+(n+2−n+1).n(n+1)

=>3A=1.2.3−0.1.2+2.3.4−1.2.3+...+n(n+1)(n+2)−(n−1)n(n+1)

=>3A=n(n+1)(n+2)

=>A=n(n+1)(n+2):3(đpcm)

Lê Thanh Sơn
Xem chi tiết
Akai Haruma
7 tháng 2 2022 lúc 23:40

Lời giải:
$n^3+3n^2+5n=n(n^2+3n+5)$

Cho $n=1$ thì $n^3+3n^2+5n=9\vdots 3$

Cho $n=2$ thì $n^3+3n^2+5n=30\vdots 3$....

Giả sử điều trên đúng với $n=k$. Tức là $k^3+3k^2+5k\vdots 3$

Ta cần cm đúng với $n=k+1$, tức là $(k+1)^3+3(k+1)^2+5(k+1)\vdots 3$

Thật vậy:

$(k+1)^3+3(k+1)^2+5(k+1)=k^3+3k^2+3k+1+5k+5+3(k+1)^2$

$=(k^3+3k^2+5k)+3(k+2)+3(k+1)^2\vdots 3$ do $k^3+3k^2+5k\vdots 3; 3(k+2)\vdots 3; 3(k+1)^2\vdots 3$

Vậy ta có đpcm.

Wind
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 10 2021 lúc 22:29

\(n=1\Rightarrow1^1\ge1!\) đúng

Giả sử đúng với \(n=k\) hay \(k^k\ge k!\) 

Cần chứng minh đúng với \(n=k+1\) hay \(\left(k+1\right)^{k+1}\ge\left(k+1\right)!\)

Ta có:

\(\left(k+1\right)^{k+1}=\left(k+1\right).\left(k+1\right)^k>\left(k+1\right).k^k\ge\left(k+1\right).k!=\left(k+1\right)!\) (đpcm)