Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngocmai
Xem chi tiết
Bùi Minh Đức B
Xem chi tiết
Pham Quoc Cuong
9 tháng 4 2018 lúc 21:24

a, Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x,y>0\)

Ta có: \(A=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+\frac{4}{a+b}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

b, Áp dụng \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x,y,z>0\)

Ta có: \(B=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2+\left(1+\frac{1}{c}\right)^2\ge\frac{\left(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\ge\frac{\left(3+\frac{9}{a+b+c}\right)^2}{3}\ge\frac{\left(3+6\right)^2}{3}=27\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

* Các BĐT phụ bạn tự CM nha! Chúc bạn học tốt

Bùi Minh Đức B
10 tháng 4 2018 lúc 21:45

Camon bạn!!! Nhưng bạn đọc sai đề r !! ^.^

Pham Quoc Cuong
10 tháng 4 2018 lúc 21:49

Sai gì bạn?

nguyen hoang
Xem chi tiết
Khánh Anh
Xem chi tiết
pham trung thanh
31 tháng 8 2018 lúc 10:59

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

pham trung thanh
31 tháng 8 2018 lúc 11:02

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)

Thảo Nguyên Xanh
Xem chi tiết
Cô Gái Mùa Đông
Xem chi tiết
Edogawa Conan
16 tháng 10 2020 lúc 13:14

Áp dụng bđt svacxo: \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}\ge\frac{\left(x_1+x_2\right)^2}{y_1+y_2}\) (1)

CM bđt đúng: Từ (1) <=> \(\left(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}\right)\left(y_1+y_2\right)\ge\left(x_1+x_2\right)^2\)

<=> \(x_1^2+\frac{x_1^2.y_2}{y_1}+\frac{x_2^2.y_1}{y_2}+x_2^2\ge x_1^2+2x_1x_2+x_2^2\)

<=> \(\frac{x_1^2y_2^2-2x_1x_2y_1y_2+x_2^2y_1^2}{y_1.y_2}\ge0\)

<=> \(\frac{\left(x_1y_2-x_2y_1\right)^2}{y_1y_2}\ge0\)(luôn đúng với mọi y1; y2 > 0)

Khi đó: F = \(\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(1+\frac{1}{a}+1+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+\frac{4}{a+b}\right)^2}{2}=\frac{\left(2+4\right)^2}{2}=18\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}1+\frac{1}{a}=1+\frac{1}{b}\\\frac{1}{a}=\frac{1}{b}\\a+b=1\end{cases}}\) <=> a = b = 1/2

Vậy MinF = 18 khi a = b = 1/2

Khách vãng lai đã xóa
tống thị quỳnh
Xem chi tiết
Hoàng Đức Khải
Xem chi tiết
Hoàng Phú Huy
14 tháng 3 2018 lúc 17:48

Đặt A là biểu thức cần CM 

ví dụ Từ ĐK a + b + c = 3 => a² + b² + c² ≥ 3 ( Tự chứng minh ) 

Áp dụng BĐT quen thuộc x² + y² ≥ 2xy 

a^4 + b² ≥ 2a²b (1) 
b^4 + c² ≥ 2b²c (2) 
c^4 + a² ≥ 2c²a (3) 
 

Hoàng Đức Khải
14 tháng 3 2018 lúc 17:50

tiếp đi bạn huy

Hoàng Đức Khải
14 tháng 3 2018 lúc 17:52

Ê mình đâu cho a+b+c=3

phan thị minh anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 8 2016 lúc 19:36

Đặt \(x=\frac{a}{b}+\frac{b}{a}\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}=x^2-2\)

Xét mẫu thức : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)=x^2-x-2=\left(x+1\right)\left(x-2\right)\)

Thay \(x=\frac{a}{b}+\frac{b}{a}\) được mẫu thức : \(\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{a}{b}+\frac{b}{a}-2\right)=\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}\)

Ta có : \(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)}=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{a^2b^2}}{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}}\)

\(=\frac{\left(a-b\right)^2}{a^2b^2}.\frac{ab}{\left(a-b\right)^2}=\frac{1}{ab}\) (đpcm)

b) Áp dụng bđt Cauchy : 

\(1=4a+b+\sqrt{ab}\ge2\sqrt{4a.b}+\sqrt{ab}\)

\(\Rightarrow5\sqrt{ab}\le1\Rightarrow ab\le\frac{1}{25}\)

\(\Rightarrow P=\frac{1}{ab}\ge25\) . Dấu "=" xảy ra khi \(\begin{cases}4a+b+\sqrt{ab}=1\\4a=b\end{cases}\)

\(\Leftrightarrow\begin{cases}a=\frac{1}{10}\\b=\frac{2}{5}\end{cases}\) 

Vậy P đạt giá trị nhỏ nhất bằng 25 tại \(\left(a;b\right)=\left(\frac{1}{10};\frac{2}{5}\right)\)