Viết các biểu thức sau dưới dạng tổng:
( 1/2 + x ) ^2 ; ( 2x + 1 ) ^2
Bài 1. Viết các biểu thức sau dưới dạng tích
a) x3+8 b) x3-64
c) 27x3+1 d) 64m3-27
Bài 2.Viết các biểu thức sau dưới dạng tổng hoặc hiệu các lập phương
a) (x+5)(x2-5x+25) b) (1-x)(x2+x+1)
c) (y+3t)(9t2-3yt+y2)
\(1,\\ a,=\left(x+2\right)\left(x^2-2x+4\right)\\ b,=\left(x-4\right)\left(x^2+8x+16\right)\\ c,=\left(3x+1\right)\left(9x^2-3x+1\right)\\ d,=\left(4m-3\right)\left(16m^2+12m+9\right)\\ 2,\\ a,=x^3+125\\ b,=1-x^3\\ c,=y^3+27t^3\)
a)
\(=\left(x+2\right)\left(x^2-2x+4\right)\)
b)
\(=\left(x-4\right)\left(x^2+4x+16\right)\)
c)=\(\left(3x+1\right)\left(9x^2-3x+1\right)\)
d)
=\(\left(4m-3\right)\left(16m^2+12m+9\right)\)
2)
a)
\(=x^3+125\)
\(\)b)\(=1-x^3\)
c)
=\(y^3+27t^3\)
Chứng minh biểu thức sau viết được dưới dạng tổng các bìnhphương hai biểu thức: x^2 +(x+1)^2 + 3(x +2)^2 +4(x +3)^2
\(x^2+\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)
\(=x^2+x^2+1+3x^2+4+4x^2+9\)
\(=x^2+x^2+1+3x^2+3+4x^2+9+1\)
\(=2x^2+1+3x^2+3+4x^2+9+1\)
Từ đây ghép x vào rồi tính nốt đẳng thức thôi nhé
Viết các biểu thức sau dưới dạng bình phương của 1 tổng hoặc 1 hiệu: x^2-x+1/4
\(x^2-x+\frac{1}{4}\)
\(=x^2-2\cdot\frac{1}{2}\cdot x+\left(\frac{1}{2}\right)^2\)
\(=\left(x-\frac{1}{2}\right)^2\)
chứng minh rằng biểu thức sau viết dưới dạng tổng các bình phương của hai biểu thức
\(x^2+2\left(x+1\right)^2+3\left(x-2\right)^2+4\left(x+3\right)^2\)
\(x^2+2\left(x+1\right)^2+3\left(x-2\right)^2+4\left(x+3\right)^2\)
\(=x^2+2\left(x^2+2x+1\right)+3\left(x^2-4x+4\right)+4\left(x^2+6x+9\right)\)
\(=x^2+2x^2+4x+2+3x^2-12x+12+4x^2+24x+36\)
\(=10x^2+16x+50\)
Câu 1. Khai triển các biểu thức sau:
a) (x-3)2 b) (x+1/2)2
c) (5x-y)2 d) (10x2-3xy2)2
Câu 2. Viết các biểu thức sau dưới dạng bình phương của một tổng:
a) x2-4x+4 b) x2+10x+25
c) x2/4 -x+1 d) 9(x+1)2-6(x+1)+1
e) (x-2y)2-8(x2-2xy)+16x2
Câu 3. Khai triển các biểu thức:
a) (a-b+c)2 b) (a+2b-c)2
c) (2a-b-c)2
Câu 4. Rút gọn biểu thức:
a) A=(x-y)2+(x+y)2
b) B=(2x-1)2-2(2x-3)2+4
Câu 5. Tính nhanh:
a) 492 b) 512
c) 99.100
Câu 7. Tìm giá trị nhỏ nhất của biểu thức:
a) A=x2-2x+7 b) B=5x2-20x
Câu 1. Khai triển các biểu thức sau:
a) (x-3)2 b) (x+1/2)2
c) (5x-y)2 d) (10x2-3xy2)2
Câu 2. Viết các biểu thức sau dưới dạng bình phương của một tổng:
a) x2-4x+4 b) x2+10x+25
c) x2/4 -x+1 d) 9(x+1)2-6(x+1)+1
e) (x-2y)2-8(x2-2xy)+16x2
Câu 3. Khai triển các biểu thức:
a) (a-b+c)2 b) (a+2b-c)2
c) (2a-b-c)2
Câu 4. Rút gọn biểu thức:
a) A=(x-y)2+(x+y)2
b) B=(2x-1)2-2(2x-3)2+4
Câu 5. Tính nhanh:
a) 492 b) 512
c) 99.100
Câu 7. Tìm giá trị nhỏ nhất của biểu thức:
a) A=x2-2x+7 b) B=5x2-20x
a. (x + y)2 = x2 + 2xy + y2
b. (x - 2y)2 = x2 - 4xy - 4x2
c. (xy2 + 1)(xy2 - 1) = x2y4 - 1
d. (x + y)2(x - y)2 = (x2 + 2xy + y2)(x2 - 2xy + y2) = x4 - (2xy + y2)2 = x4 - (4x2y2 + y4) = x4 - 4x2y2 - y4
Chucs hocj toots
Câu 2:
a: \(x^2-4x+4=\left(x-2\right)^2\)
b: \(x^2+10x+25=\left(x+5\right)^2\)
d: \(9\left(x+1\right)^2-6\left(x+1\right)+1=\left(3x+2\right)^2\)
e: \(\left(x-2y\right)^2-8\left(x-2xy\right)+16x^2=\left(x-2y+4x\right)^2=\left(5x-2y\right)^2\)
Câu 7:
a: Ta có: \(A=x^2-2x+7\)
\(=x^2-2x+1+6\)
\(=\left(x-1\right)^2+6\ge6\forall x\)
Dấu '=' xảy ra khi x=1
b: Ta có: \(B=5x^2-20x\)
\(=5\left(x^2-4x+4-4\right)\)
\(=5\left(x-2\right)^2-20\ge-20\forall x\)
Dấu '=' xảy ra khi x=2
viết biểu thức sau dưới dạng tổng
(x+1) (x^2 - x + 1)
(x+1)(x^2 - x + 1)
=x^3 - x^2 + x + x^2 -x +1
\(\left(x+1\right)\left(x^2-x+1\right)\)
\(=x^3+1\)
Hok tốt !
viết các biểu thức sau dưới dạng bình phương của 1 tổng hoặc hiệu B = (x/2 +y)^3 -6(x/2 + y )^2z + 6(x+2y)z^2 - 8z^3
`B=(x/2+y)^3-6(x/2+y)^2z + 6(x+2y)z^2-8z^3`
`=(x/2+y)^3 - 3. (x/2+y)^2 . 2z + 3. (x/2+y) . (2z)^2 - (2z)^3`
`=(x/2+y-2z)^3`
Sửa đề: Δ\(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)
Ta có: \(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)
\(=\left(\dfrac{1}{2}x+y\right)^2-3\cdot\left(\dfrac{1}{2}x+y\right)^2\cdot2z+3\cdot\left(\dfrac{1}{2}x+y\right)\cdot\left(2z\right)^2-\left(2z\right)^3\)
\(=\left(\dfrac{1}{2}x+y-2z\right)^3\)
viết biểu thức sau dưới dạng tổng
(x^2 + 2x - 1)^2
\(\left(x^2+2x-1\right)^2\)
\(=\left(x^2+2x\right)^2-2\left(x^2+2x\right)+1\)
\(=x^4+4x^3-2x^2+4x^2+4x+1\)
\(=x^4+4x^3+2x^2+4x+1\)