A=1.2-2.3+3.4-4.5+...+49.50-50.51
Tính: 1.2+2.3+3.4+4.5+.....+50.51
Ta có: 3S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + .....+ 50.51.(52 -49)
= 1.2.3 - 0 + 2.3.4 - 1.2.3 + 3.4.5 -2.3.4 + .....+ 50.51.52 - 49.50.51
3S = 50.51.52
S = 50.17.52 =44200
tính tổng:
A=1/1.2+1/2.3+1/3.4+......+1/49.50+1/50.51
Ta có:A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+......+\dfrac{1}{49.50}+\dfrac{1}{50.51}\)
A=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.......+\dfrac{1}{49}-\dfrac{1}{50}+\dfrac{1}{50}-\dfrac{1}{51}\)
A=1-\(\dfrac{1}{51}=\dfrac{50}{51}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}+\dfrac{1}{50.51}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}+\dfrac{1}{50}-\dfrac{1}{51}\)
\(A=\dfrac{1}{1}-\dfrac{1}{51}\)
\(A=\dfrac{50}{51}\)
A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}+\dfrac{1}{50.51}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}+\dfrac{1}{50}-\dfrac{1}{51}\)
= \(1-\dfrac{1}{51}\)
= \(\dfrac{50}{51}\)
Thực hiện phép tính:
1.2+2.3+3.4+...+49.50+50.51
A=1.2+2.3+3.4+...+49.50+50.51
3A= 1.2.3+2.3.3+3.4.3+...+49.50.3+50.51.3
3A= 1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+49.50.(51-48)+50.51.(52-49)
3A= 0.1.2 - 1.2.3 + 1.2.3- 2.3.4 + 2.3.4 - 3.4.5 + ... + 48.49.50 - 49.50.51 + 49.50.51 - 50.51.52
3A= 50.51.52
3A=132600
A=66300
Cho A=1/1.2 + 1/2.3 + + 1/ 3.4+...+1/49.50 ; B = 1.2+2.3+3.4+4.5+5.6+...+49.50
Tính 50 mủ 2 A – B/17
A=1.2+2.3+3.4+4.5+..........+49.50
a=1/1.2+1/2.3+1/3.4+1/4.5+....+1/49.50
\(A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{49.50}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Vậy A=49/50
Công thức: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Tính S biết: S=1.2+2.3+3.4+4.5+................+49.50
A=1.2+2.3+...+49.50
3A=1.2.3+2.3.3+...+49.50.3
3A=1.2.(4-1)+2.3.(5-2)+....+49.50.(51-48)
3A=1.2.4-1.2.1+2.3.5-2.3.2+...+49.50.51-49.50.48
3A=49.50.51
=>A=49.25.51
=>A=62475
A=1.2+2.3+...+49.50
3A=1.2.3+2.3.3+...+49.50.3
3A=1.2.(4-1)+2.3.(5-2)+....+49.50.(51-48)
3A=1.2.4-1.2.1+2.3.5-2.3.2+...+49.50.51-49.50.48
3A=49.50.51
=>A=49.25.51
=>A=62475
3S=(1.2+2.3+3.4+...+49.50).3
3S=1.2.3+2.3.3+3.4.3+...+49.50.3
3S=1.2.3+2.3.(4-1)+3.4.(5-2)+...+49.50.(51-48)
3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50
3S=49.50.51
S=17.49.50
chứng minh rằng 1/1.2 + 1/2.3 + 1/3.4+ 1/4.5+ ...+1/49.50 <1
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\) (đpcm)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
\(\Rightarrow\) Quy đồng phân số và 1 là : \(\frac{49}{50}\) và \(1\)
Giữ nguyên phân số \(\frac{49}{50}\)
Ta có : \(\frac{1}{1}=\frac{1.50}{1.50}=\frac{50}{50}\)
\(\Rightarrow\frac{49}{50}< \frac{50}{50}\left(đpcm\right)\)
A=1.2+2.3+3.4+...+50.51