Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huỳnh Trần Thảo Nguyên
Xem chi tiết
Die Devil
7 tháng 4 2017 lúc 7:38

\(a.\)\(x^2+3x=0\)

\(\Leftrightarrow x\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)

\(b.\)\(5x^3-4x=0\)

\(\Leftrightarrow x\left(5x^2-4\right)=0\)

\(c.\)\(\left(x+2\right)\left(7-4x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\7-4x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{7}{4}\end{cases}}}\)

\(d.\)\(2x\left(x+1\right)-x-1=0\)

\(\Leftrightarrow2x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}}\)

Đoàn Quang Thái
Xem chi tiết
trần thị hoàng yến
Xem chi tiết
nguyenvankhoi196a
5 tháng 11 2017 lúc 17:11

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

Đường Quỳnh Giang
30 tháng 9 2018 lúc 5:18

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

Bùi Nhi
Xem chi tiết
ILoveMath
12 tháng 6 2021 lúc 10:12

a) f(x) = 3x3-2x2+7x-1

g(x) = x2+4x-1

b) h(x) = 3x3-2x2+7x-1-x2-4x+1

            = 3x3-3x2+3x

h(x) = 3x3-3x2+3x=0

       ⇒ 3(x3-x2+x)=0

       ⇒ x3-x2+x=0

đến đây mik ko biết làm nữa

Trần Đức Gia Khánh
Xem chi tiết

g)G(x)=x^3-4x=0

=>x(x^2-4)=0

=>\(\left[{}\begin{matrix}x=0\\x^2-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=4\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\x=\sqrt{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy nghiệm của đa thức G(x) là 0 hoặc 2

h) H(x)=5x^3-4x^2-3x^3+3x^2-2x^3+x=0

=>(5x^3-3x^3-2x^3)+(-4x^2+3x^2)+x

=>x-x^2=0

=>x(1-x)

=>\(\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy nghiệm của đa thức H(x) là 0 hoặc 1

d) C(x)=(x-1)(x+1)=0

=>\(\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy nghiệm của đa thức C(x) là 1hoặc -1

Nguyễn Cao Hoàng Quý
Xem chi tiết
bỏ mặc tất cả
9 tháng 4 2016 lúc 22:30

Chiều rộng là : 15 : ( 5 - 3 ) x 3 = 22,5 m

Chiều dài là : 15 + 22,5 = 37,5 m

Chu vi là : ( 37,5 + 22,5 ) x 2 = 120 m

Diện tích là : 37,5 x 22,5 = 843,75 m2

oOo Vũ Khánh Linh oOo
9 tháng 4 2016 lúc 22:39

ủng hộ  nha  

Thư Hiếu 123
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 5 2020 lúc 15:23

Trình bày đề bài cho dễ nhìn bạn eyy :v 

Khó nhìn như này thì God cũng chịu -.-

Khách vãng lai đã xóa
Phan Nghĩa
11 tháng 5 2020 lúc 15:48

mù mắt xD ghi rõ đề đi bạn ơi !

Khách vãng lai đã xóa
Wall HaiAnh
11 tháng 5 2020 lúc 16:01

Dịch:

Cho \(\hept{\begin{cases}f\left(x\right)=4x^3-2x^2+x-5\\g\left(x\right)=x^3+4x^2-3x+2\\h\left(x\right)=-3x^2+x^2+x-2\end{cases}}\)

Tính a) \(f\left(x\right)+g\left(x\right)\)

b) \(g\left(x\right)-h\left(x\right)\)

2. Tìm nghiệm của đa thức

a) \(7-2x\)

b) (x+1)(x-2)(2x-1)

c) 2x+5

d) 3x2+x

3. CMR các đa thức sau không có nghiệm

\(a,f\left(x\right)=x^2+1\)

\(b,\left(2x+1\right)^2+3\)

Khách vãng lai đã xóa
tt7a
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2023 lúc 21:18

Bài 2:

a: A(x)=0

=>-4x+7=0

=>4x=7

=>x=7/4

b: B(x)=0

=>x(x+2)=0

=>x=0 hoặc x=-2

c: C(x)=0

=>1/2-căn x=0

=>căn x=1/2

=>x=1/4

d: D(x)=0

=>2x^2-5=0

=>x^2=5/2

=>\(x=\pm\dfrac{\sqrt{10}}{2}\)

Tạ Thị Thùy Trang
Xem chi tiết
Phạm Thị Thùy Linh
17 tháng 6 2019 lúc 17:07

Bài 1 ( a )

\(A_x=-4x^5-x^3+4x^2+5x+9+4x^5-6x^2-2\)

\(=-x^3-2x^2+5x-7\)

\(B_x=-3x^4-2x^3+10x^2-8x+5x^3-7-2x^3+8x\)

\(=-3x^4+x^3+10x^2-7\)

Phạm Thị Thùy Linh
17 tháng 6 2019 lúc 17:16

Bài 1 ( b )

\(P_x=\left(-x^3-2x^2+5x-7\right)+\left(3x^4+x^3+10x-7\right)\)

\(=-x^3-2x^2+5x-7+3x^4+x^3+10x-7\)

\(=3x^4-2x^2+15x-14\)

\(Q_x=\left(-x^3-2x^2+5x-7\right)-\left(3x^4+x^3+10x-7\right)\)

\(=-x^3-2x^2+5x-7-3x^4-x^3-10x+7\)

\(=-3x^4-2x^3-5x\)

Phạm Thị Thùy Linh
17 tháng 6 2019 lúc 17:26

Bài 2 \(a,\)

\(F_x-G_x+H_x=\left(x^3-2x^2+3x+1\right)-\left(x^3+x-1\right)+\left(2x^2-1\right)\)

\(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)

\(=2x+1\)

\(b,\)\(F_x-G_x+H_x=0\)

\(\Rightarrow2x+1=0\)

\(\Rightarrow2x=-1\)

\(\Leftrightarrow x=-\frac{1}{2}\)