tìm giá trị của a để đa thức 3x3+x2+x-a+1 chia hết cho đa thức x-3
giá trị nguyên của x<0 để giá trị của đa thức
A=12x^3-7x^2-14x+14
chia hết cho giá trị của đa thức B=4x-5
giúp mình với đang cần gấp
Ta có:(12x^3-7x^2-14x+14): (4x-5)= (3x^2+2x-1)+9: (4x-5). Để (12x^3-7x^2-14x+14)chia hết cho (4x-5) thì 9 phải chia hết cho(4x-5).=>4x-5 thuộc vào ước của 9=+-1;+-3;+-9.xét từng giá trị để tìm x thỏa mãn khi x<0. Sau đó kết luận.
A=12x^3-7x^2-14x+14
PT: (\(-7x^2-14x+14\))+12\(x^3\)
-7(x^2+2x+1)+12x^3+21 do(14=-7+21)
-7\(\left(x+1\right)^2\)+12x^3+21
-7\(\left(x+1\right)^2\)+12(x^3+1)+9
=>x=-1 để A đạt GTNN
Mà để A chia hết cho B thì B phải thuộc ước của 9 nên x=-1
Cho đa thức P(x)=x4 + x3 + x2 + x + m
a, Tìm m để P(x) chia hết cho Q(x)=x+10
( ý a kết quả m=9090 )
b, Tìm các nghiệm của đa thức P(x) với giá trị vừa tìm được của m
Đây là toán casio
cho biểu thức C=\(\dfrac{x^3}{x^2-4}-\dfrac{x}{x-2}-\dfrac{2}{x+2}\)
a, Tìm giá trị của x để giá trị của biểu thức C được xác định
b, Tìm x để C=0
c, Tìm giá trị nguyên của x để C nhận giá trị dương
a) C được xác định <=> x khác +- 2
b) Ta có : \(C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
Để C = 0 thì x - 1 = 0 <=> x = 1 (tm)
c) Để C nhận giá trị dương thì x - 1 > 0 <=> x > 1
Kết hợp với ĐK => Với x > 1 và x khác 2 thì C nhận giá trị dương
Cho đa thức P=3x^2+5
a) Tìm giá trị của đa thức P khi x= -1; x= 0; x= 3
b) Chứng tỏ rằng đã thức P luôn dương vơi mọi giá trị của x
a/ \(+,x=1\Leftrightarrow P=3.1^2+5=8\)
+, \(x=0\Leftrightarrow P=3.0^2+5=5\)
+, \(x=3\Leftrightarrow P=3.3^2+5=17\)
b/ Với mọi x ta có :
\(3x^2\ge0\)
\(5>0\)
\(\Leftrightarrow3x^2+5>0\)
\(\Leftrightarrow P>0\)
\(\Leftrightarrow P\) luôn dương với mọi x
Cho biểu thức: A=[2/(x+1)3(1/x+1) + 1/x2+2x+1(1/ x2 +1)]:x-1/x3]
a. Thu gọn A
b. Tìm các giá trị của x để A≥1
c. Tìm các giá trị nguyên của x để A có giá trị nguyên
cho đa thức b(x)= m2x2016+2mx2015. tìm các giá trị của m để đa thức b(x) có nghiệm là x=-1
Tìm số các số nguyên m để giá trị của biểu thức m-1 chia hết cho giá trị của 2m+1
Với giá trị nào của a và b thì đa thức \(x^3+ax^2+2x+b\) chia hết cho đa thức \(x^2+x+1\)
Cách 1 : Chia \(f(x)\)cho x2 + x + 1
Ta được dư là : \((2-a)x+(b+1-a)=r(x)\)
Ta có phép chia hết khi và chỉ khi \(r(x)=0\), tức là : \(\hept{\begin{cases}2-a=0\\b+1-a=0\end{cases}\Rightarrow}a=2,b=1\)
Cách 2 : Chú ý rằng \(f(x)\)bậc 3 , còn đa thức chia là bậc 2, nên thương phải là một nhị thức bậc nhất, có dạng x + k . Từ đó :
\((x+k)(x^2+x+1)=x^3+ax^2+2x+b\)
\(\Leftrightarrow x^3+ax^2+2x+b=x^3+(k+1)x^2+(k+1)x+k\)
Hệ số của các hạng tử cùng bậc phải bằng nhau , suy ra a = k + 1 ; 2 = k + 1 ; b = k. Từ đây ta có : k = 1 , a = 2 , b = 1
cho biểu thức \(A=33×3+720:\left(x-6\right)\)
Tìm giá trị của x khi \(A=139\)
Tìm giá trị số tự nhiên của x để biểu thức A có giá trị lớn nhất, giá trị lớn nhất là bao nhiêu?
\(A=139\)
\(\Leftrightarrow720:\left(x-6\right)=40\)
\(\Leftrightarrow x-6=18\)
hay x=24