Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duong Van Tam
Xem chi tiết
Cold Boy
Xem chi tiết
Huỳnh Quang Sang
8 tháng 1 2019 lúc 9:56

M I E A F P O D C B

a\()\)Gọi O là giao điểm hai đường chéo của hình chữ nhật ABCD . Dễ thấy : AM // DO

=> Tứ giác AMDB là hình thang

b\()\)Do AM // BD nên \(\widehat{OBA}=\widehat{MAE}(\text{hai giác đồng vị})\). Tam giác AOB cân ở O nên \(\widehat{OBA}=\widehat{OAB}\). Gọi I là giao điểm hai đường chéo của hình chữ nhật AEMF thì tam giác AIE cân ở I nên \(\widehat{IAE}=\widehat{IEA}\)

Từ các chứng minh trên suy ra : \(\widehat{FEA}=\widehat{OAB}\)do đó EF // AC \((1)\)

Mặt khác IP là đường trung bình của tam giác MAC nên IP // AC \((2)\)

Từ 1 và 2 => 3 điểm E,F,P thẳng hàng

c\()\)\(\Delta MAF~\Delta DBA(g-g)\Rightarrow\frac{MF}{FA}=\frac{AD}{AB}(\text{không đổi})\)

Bạn tham khảo nhé Bùi Quang Sang

Chúc bạn học tốt ~

Tẹt Sún
Xem chi tiết
Đinh Phương Linh
24 tháng 11 2016 lúc 20:47

EF //AC hay MC thế bạn

Tẹt Sún
25 tháng 11 2016 lúc 21:00

EF//AC bn ak

Cô Hoàng Huyền
12 tháng 10 2018 lúc 9:15

a) Gọi giao điểm của AC và BD là O. Theo tính chất hình chữ nhật ta có O là trung điểm AC và BD.

Xét tam giác ACM có O, P lần lượt là trung điểm của AC và MC. Vậy nên OP là đường trung bình hay OP // MA.

Từ đó suy ta AMDB là hình thang.

b)

+) Ta có ngay FAEM là hình chữ nhật (Tứ giác có 3 góc vuông)

Vậy nên \(\widehat{MFE}=\widehat{MAE}=\widehat{MAD}\)

Lại có \(\widehat{MAD}=\widehat{ADB}\)   (So le trong)

          \(\widehat{ADB}=\widehat{DAC}\)   (Do ABCD là hình chữ nhật)

Vậy thì ta có: \(\widehat{MFE}=\widehat{DAC}\)

Mà MF // AE (Cùng vuông góc với FA), vậy nên EF // AC.

+) Gọi O' là giao điểm của EF và MA, ta có ngay O' là trung điểm AM.

Xét tam giác MAC có O' và P lần lượt là trung điểm của MA và MC. Vậy nên O'P là đường trung bình hay O'P // AC.

Lại có O'E // AC, O'F // AC

Nên E, F, P thẳng hàng.

Đào Hông Giang
Xem chi tiết
Thiếu gia họ Hoàng
15 tháng 2 2016 lúc 18:04

mới học lớp 6 thôi

Nguyen Duc Minh
15 tháng 2 2016 lúc 20:30

mới học lớp 6 thì cmt vao đây làm gì?

mun dieu da
Xem chi tiết
Nhan Thanh
Xem chi tiết
Phía sau một cô gái
4 tháng 8 2021 lúc 21:29

a) Chọn điểm O là giao điểm của 2 đường chéo của hình chữ nhật ABCD
⇒ PO là đường trung bình của △ CAM
⇒ PO // AM ⇒ BD//AM
⇒ Tứ giác AMDB là hình thang
b)   Từ a ta có: có AM // BD
⇒     \(\widehat{A_1}=\widehat{B_1}\) ( đồng vị )
Mà △ OAB cân tại O ( vì ABCD là hình chữ nhật )
⇒   \(\widehat{A_2}=\widehat{B_1}\)
⇒  \(\widehat{A_1}=\widehat{A_2}\)    \(\left(1\right)\)
Gọi I là giao điểm của 2 đường chéo của hình chữ nhật AEMF
⇒     △ IEA cân tại I
⇒     \(\widehat{E_1}=\widehat{A_1}\)   \(\left(2\right)\)
Từ \(\left(1\right)\)\(\left(2\right)\) ⇒  \(\widehat{E_1}=\widehat{A_1}\) ( ở vị trí đồng vị )
⇒ EF // AC  \(\left(3\right)\)
     Mặt khác IP là đường trung bình của △ MAC ( do I,P là trung điểm của AM và BD )
⇒  IP //  AC   \(\left(4\right)\)
Từ \(\left(3\right)\)\(\left(4\right)\) ⇒ EF  // IP ⇒  Ba điểm E, F, P thẳng hàng
c) Xét△ MAF và △ DBA có:
\(\widehat{MFA}=\widehat{DAB}\)  \(=90^o\)
\(\widehat{A_1}=\widehat{B_1}\) ( cmt ) ;  \(\widehat{A_1}=\widehat{M_1}\)   ( so le trong )
⇒ \(\widehat{B_1}=\widehat{M_1}\)
⇒△ MAF ∼ △ DBA ( g - g )
\(\dfrac{MF}{DA}=\dfrac{AF}{BA}\)    ⇒    \(\dfrac{MF}{AF}=\dfrac{DA}{BA}\)   ( không đổi )

nguyễn phương thảo
Xem chi tiết
Nguyễn Diệu Linh
Xem chi tiết
Trần Ngọc Tú
Xem chi tiết
Nguyễn Hương Ly
Xem chi tiết