Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Minh Khuê
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
24 tháng 6 2020 lúc 10:58

A = | x - 3 | + 1

Ta có : \(\left|x-3\right|\ge0\forall x\Rightarrow\left|x+3\right|+1\ge1\)

Dấu = xảy ra <=> | x + 3 | = 0

                      <=> x + 3 = 0

                      <=> x = -3

Vậy AMin = 1 khi x = -3

B = -100 - | 7 - x |

Ta có : \(\left|7-x\right|\ge0\forall x\Rightarrow-\left|7-x\right|\le0\)

=> \(-100-\left|7-x\right|\le-100\)

Dấu = xảy ra <=> - | 7 - x | = 0

                     <=> 7 - x = 0

                     <=> x = 7

Vậy BMax = -100 khi x = 7

C = -( x + 1 )2 - | 2 - y | + 11

Ta có : \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|2-y\right|\ge0\forall y\end{cases}\Rightarrow}\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2-y\right|\le0\end{cases}}\)

=> \(-\left(x+1\right)^2-\left|2-y\right|\le11\forall x,y\)

Dấu = xảy ra <=> -( x + 1 )2 = 0 và | 2 - y | = 0

                     <=> x + 1 = 0 và 2 - y = 0

                     <=> x = -1 và y = 2

Vậy CMax = 11 khi x = -1 ; y = 2

D = ( x - 1 )2 + | 2y + 2 | + 3

Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left|2y+2\right|\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left|2y+2\right|+3\ge}3\)

Dấu = xảy ra <=> ( x - 1 )2 = 0 và | 2y + 2 | = 0

                      <=> x - 1 = 0 và 2y + 2 = 0

                      <=> x = 1 và y = -1

Vậy DMin = 3 khi x = 1 và y = -1

Khách vãng lai đã xóa
シA-G:longzzシ
24 tháng 6 2020 lúc 11:05

a) A=/x-3/+1>=0+1=1

dấu "="sảy ra <=>x-3=0<=>x=3

vậy min A=1 <=>x=3

b) B=-100-/7-x/=<-100-0=-100

dấu "="sảy ra <=>7-x=0<=>x=7

vậy max B=-100<=>x=7

c)C=-(x+1)^2-/2-y/+11=<-0-0+11=11

dấu "="sảy ra <=>x=-1vày=2

vậy max C=11<=>x=-1 và y=-2

d)D=(x-1)^2+/2y+2/+3>=0+0+3=3

dấu "="sảy ra <=>x=1 và y =-1

vậy min D=3<=>x=1 và y=-1

Khách vãng lai đã xóa
Alexandra Alice
Xem chi tiết
Bui Dinh Quang
Xem chi tiết
Đỗ Trung Kiên
3 tháng 1 2018 lúc 19:40

a)ta có:/y-1/>=0 với mọi y

           /y-1/+7>=7 với mọi y

dấu "=" xảy ra khi và chỉ khi:y-1=0=> y=1

vậy MIN của biểu thức là 7 tại y=1

Toan Phạm
Xem chi tiết
Lê
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
20 tháng 8 2020 lúc 7:35

\(M=\frac{2x^2+4x+60}{x^2+2x+4}=\frac{2\left(x^2+2x+4\right)+52}{x^2+2x+4}=2+\frac{52}{x^2+2x+4}=2+\frac{52}{\left(x+1\right)^2+3}\)

Để M đạt GTNN => \(\frac{52}{\left(x+1\right)^2+3}\)đạt GTLN

=> \(\left(x+1\right)^2+3\)(*) đạt GTNN

\(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+3\ge3\)

=> Min(*) = 3 <=> x + 1 = 0 => x = -1

=> MinM = \(2+\frac{52}{\left(-1+1\right)^2+3}=2+\frac{52}{3}=\frac{58}{3}\), đạt được khi x = -1

Mình không chắc nha -.-

Khách vãng lai đã xóa
Phan Nghĩa
20 tháng 8 2020 lúc 7:43

\(M=\frac{2x^2+4x+60}{x^2+2x+4}=\frac{2\left(x^2+2x+4\right)+52}{x^2+2x+4}=2+\frac{52}{x^2+2x+4}\)

Để M đạt GTLN  => \(\frac{52}{x^2+2x+4}\)(**) đạt GTLN 

Hay \(x^2+2x+4\)(*) đạt GTNN 

Ta có : \(x^2+2x+4=\left(x^2+2x+1\right)+3=\left(x+1\right)^2+3\)

Do \(\left(x+1\right)^2\ge0\forall x\Leftrightarrow\left(x+1\right)^2+3\ge3\forall x\)

Nên GTNN (*) = 3 khi x + 1 = 0 <=> x = -1

Suy ra GTLN (**) = 52/3 khi x = -1

Vậy nên GTLN M = 2 + 52/3 = 58/3 khi x = -1

Khách vãng lai đã xóa
Thanh Tùng DZ
Xem chi tiết
Thắng Nguyễn
11 tháng 1 2017 lúc 20:42

bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy

a)Ta thấy: \(\left|x-5\right|\ge0\)

\(\Rightarrow-\left|x-5\right|\le0\)

\(\Rightarrow1000-\left|x-5\right|\le1000\)

\(\Rightarrow A\le1000\)

Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)

Vậy \(Max_A=1000\) khi \(x=5\)

b)Ta thấy: \(\left|y-3\right|\ge0\)

\(\Rightarrow\left|y-3\right|+50\ge50\)

\(\Rightarrow B\ge50\)

Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)

Vậy \(Min_B=50\) khi \(y=3\)

c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)

\(\Rightarrow C\ge-1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

Thái Viết Nam
11 tháng 1 2017 lúc 21:12

Khó vậy bạn

Mình mới lớp 7

Ai cho mình xin k nhé

Thanks

Nguyễn Ngọc Minh Hoài
17 tháng 1 2018 lúc 21:07

Thắng Nguyễn làm đúng rồi đấy các bn, tham khảo nha

Taehuyng
Xem chi tiết
tran hoang phi
Xem chi tiết
tran hoang phi
7 tháng 1 2020 lúc 20:52

các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi

Khách vãng lai đã xóa
Black_sky
7 tháng 1 2020 lúc 20:59

a,Vì \(|x+5|\ge0\) với \(\forall x\)

=>\(A\le20\)

Dấu bằng xảy ra \(\Leftrightarrow x+5=0\)

                                 x=-5

Vậy Max A=20 khi x=-5

Khách vãng lai đã xóa
Trần Anh Đức
7 tháng 1 2020 lúc 20:59

a, Vì /x+5/ >= 0 nên để A lớn nhất thì /x+5/ phải nhỏ nhất nên /x+5/ = 0 nên x=-5

Vậy A=20-/-5+5/=20-0=20

b,c Tương tự câu a

Khách vãng lai đã xóa
Nguyễn Kiều Anh
Xem chi tiết
Akai Haruma
26 tháng 8 2021 lúc 22:00

Lời giải:

a. $y=\sqrt{x^2+x-2}\geq 0$ (tính chất cbh số học)

Vậy $y_{\min}=0$. Giá trị này đạt tại $x^2+x-2=0\Leftrightarrow x=1$ hoặc $x=-2$
b.

$y^2=6+2\sqrt{(2+x)(4-x)}\geq 6$ do $2\sqrt{(2+x)(4-x)}\geq 0$ theo tính chất căn bậc hai số học

$\Rightarrow y\geq \sqrt{6}$ (do $y$ không âm)

Vậy $y_{\min}=\sqrt{6}$ khi $x=-2$ hoặc $x=4$

$y^2=(\sqrt{2+x}+\sqrt{4-x})^2\leq (2+x+4-x)(1+1)=12$ theo BĐT Bunhiacopxky

$\Rightarrow y\leq \sqrt{12}=2\sqrt{3}$

Vậy $y_{\max}=2\sqrt{3}$ khi $2+x=4-x\Leftrightarrow x=1$

c. ĐKXĐ: $-2\leq x\leq 2$

$y^2=(x+\sqrt{4-x^2})^2\leq (x^2+4-x^2)(1+1)$ theo BĐT Bunhiacopxky

$\Leftrightarrow y^2\leq 8$

$\Leftrightarrow y\leq 2\sqrt{2}$

Vậy $y_{\max}=2\sqrt{2}$ khi $x=\sqrt{2}$

Mặt khác:

$x\geq -2$

$\sqrt{4-x^2}\geq 0$

$\Rightarrow y\geq -2$
Vậy $y_{\min}=-2$ khi $x=-2$

Trần Phạm Minh Anh
Xem chi tiết