Cho hai số thực x,y. Chứng minh rằng nếu xy+x+y=-1 thì trong hai số x,y có ít nhất một số bằng -1
Cho 3 số thực x, y, z thỏa mãn: xyz = 1.Chứng minh rằng:
Nếu \(x+y+z>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\) thì trong 3 số x, y, z có duy nhất một số lớn hơn 1.
chứng minh răng nếu ba số x, y , z thỏa mãn hệ pt:
x + y + z = 2
1/x + 1/y + 1/z = 1/2
thì có ít nhất một trong ba số x, y , z phải bằng 2
Cho 3 số thực dương x,y,z thõa mãn \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=1\)\(1\)
Chứng minh rằng: Trong 2 số x,y,z có ít nhất một số không nhỏ hơn 2 và có ít nhất 1 số không lớn hơn 2.
cho x,y thuộc R
Đặt a=x^2+6y+5 và b=y^2-2x+6
chứng minh rằng trong hai số x và y có ít nhất 1 số dương
Cho x,y,z là các số thực thỏa mãn điều kiện: \(x+y+z=3\); \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\).
Chứng minh rằng ít nhất một trong ba số x,y,z bằng 3.
Từ x+y+z=3 ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\frac{\Leftrightarrow xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)
Nhân chéo ta có:
\(\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow x^2y+xyz+x^2z+y^2x+y^2z+xyz+xyz+z^2y+z^2x=xyz\)
\(\Leftrightarrow x^2y+x^2z+y^2z+y^2x+z^2x+z^2y+2xyz=0\)
\(\Leftrightarrow\left(x^2y+x^2z+y^2x+xyz\right)+\left(y^2z+z^2x+z^2y+xyz\right)=0\)
\(\Leftrightarrow x\left(xy+xz+y^2+yz\right)+z\left(xy+xz+y^2+yz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=0\)
\(\Leftrightarrow\left(x+z\right)\left[\left(xy+y^2\right)+\left(xz+yz\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)
\(\Leftrightarrow\left(x+z\right)\left(y+z\right)\left(x+y\right)=0\)
Suy ra x+z=0 hoặc y+z=0 hoặc x+y=0
Với x+z=0 ta đc y=3
Với y+z=0 ta đc x=3
Với x+y=0 ta đc z=3
Từ đó suy ra đccm
cho x,y thuộc R. Đặt a=x^2+6y+5; b=y^2-2x+6 Chứng minh rằng trong hai số a và b có ít nhất một số dương
\(a+b=x^2+6y+5+y^2-2x+6=\left(x-1\right)^2+\left(y+3\right)^2+1\ge1\)
Suy ra a + b luôn phải có một số dương.
Cho ba số thực dương x,y,z thỏa mãn \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\)
Chứng minh rằng: Trong ba số x,y,z có ít nhất 1 số không nhỏ hơn 2 và có ít nhất 1 số không lớn hơn 2.
Ta giả sử 3 số đều =2
=>\(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)(Đúng)
=>đpcm
P/s : nhanh gọn lẹ :))
Đặt \(A=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\)
Không mất tính tổng quát giả sử:
\(\frac{1}{x+1}< \frac{1}{y+1}< \frac{1}{z+1}\)
Ta có
+) \(A>\frac{3}{1+x}\Leftrightarrow1>\frac{3}{1+x}\)
\(\Leftrightarrow\frac{1}{3}>\frac{1}{x+1}\Leftrightarrow x+1>3\)
<=> x>2(1)
+) \(A< \frac{3}{1+z}\Leftrightarrow1< \frac{3}{1+z}\Leftrightarrow\frac{1}{3}< \frac{1}{1+z}\Leftrightarrow1+z< 3\Leftrightarrow x< 2\)(2)
Từ (1) (2) => ĐPCM
Cho x, y thuộc R. Đặt a= x²+ 6y+5 và b=y²- 2x+ 6
Chứng minh rằng trong hai số a và b phải có ít nhất một số dương
Cho x và y là hai số thực dương thỏa x + y = 1.Chứng minh rằng :1/(x^2+y^2) +1/xy >= 4+ 2căn(3)