Cho \(x,y,z\ge0\) và \(x^2+y^2+z^2+xyz=4\)
Tìm giá trị nhỏ nhất của A=x+y+z
HỘ mình vs ạ chỗ đánh giá \(0\le x,y,z\le2\rightarrow2\left(xy+yz+zx\right)\ge2xy\ge xyz\) với ạ !
Cho các số thực dương x, y, z. Tìm giá trị lớn nhất của biểu thức:
\(A=\frac{xyz\left(x+y+z+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}\)
Ta chứng minh được các bất đẳng thức bằng biến đổi tương đương và bất đẳng thức Cô-si:
\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}\)
\(xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}\)
\(\Rightarrow\frac{xyz}{xy+yz+zx}\le\frac{\sqrt[3]{xyz}}{3}\)
Mà \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}\le\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}\)
Vậy \(A\le\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}.\frac{\sqrt{3\left(x^2+y^2+z^2\right)}+\sqrt{x^2+y^2+z^2}}{x^2+y^2+z^2}\)
\(A\le\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{3}=\frac{3+\sqrt{3}}{3}\)
cho x,y,z>0 thỏa mãn \(\left(x^2+y^2\right)\left(y^2+z^2\right)\left(z^2+x^2\right)=8\)
Tìm giá trị nhỏ nhất của S=\(xyz\left(x+y+z\right)^3\)
(có thể dùng BDT \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\))
tks mn<3
Cho \(x+y+z=xyz\) và \(xy+yz+zx\ne-3\)
Chứng minh: \(\dfrac{x.\left(y^2+z^2\right)+y.\left(z^2+x^2\right)+z.\left(x^2+y^2\right)}{xy+yz+zx-3}=xyz\)
cho ba số thực x,y,z thỏa mãn xy+yz+zx=xyz. tìm giá trị nhỏ nhất của biểu thức H=\(\dfrac{x^2}{9z+zx^2}\)+\(\dfrac{y^2}{9x+xy^2}\)+\(\dfrac{z^2}{9y+yz^2}\)
theo định lí đi dép tổ ong thì 2 trong 3 số x-2;y-2;z-2 cùng dấu
giả sử \(\left(x-2\right)\left(y-2\right)\ge0\Leftrightarrow xy-2\left(x+y\right)+4\ge0\)
\(\Leftrightarrow xy-2\left(6-z\right)+4\ge0\)
<=>xy-8+2z>(=)0
<=>xyz+2z^2-8z>(=)0
<=>xyz>(=)8z-2z^2
\(x^2-xy+y^2\ge\frac{x^2+y^2}{2}\ge\frac{\left(x+y\right)^2}{4}=\frac{\left(6-z\right)^2}{4}=\frac{z^2}{4}-3z+9\)
xz+yz=z(x+y)=x(6-z)=6z-z2
\(\Rightarrow x^2+y^2+z^2-xy-yz-zx+xyz\ge\frac{z^2}{4}-3z+9+z^2+z^2-6z+8z-z^2=\frac{z^2}{4}-z+9=\left(\frac{z}{2}-1\right)^2+8\ge8\)
tìm giá trị nhỏ nhất của biểu thức sau với x,y,z>0 và xyz=1
\(A=\frac{1}{x+y+z}-\frac{2}{xy+yz+zx}\)
Bổ đề: \(\left(mn+np+pm\right)^2\ge3mnp\left(m+n+p\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow m^2n^2+n^2p^2+p^2m^2+2mnp\left(m+n+p\right)\ge3mnp\left(m+n+p\right)\)\(\Leftrightarrow m^2n^2+n^2p^2+p^2m^2\ge mnp\left(m+n+p\right)\)\(\Leftrightarrow m^2n^2+n^2p^2+p^2m^2-mnp\left(m+n+p\right)\ge0\)\(\Leftrightarrow\left(mn-np\right)^2+\left(np-pm\right)^2+\left(pm-mn\right)^2\ge0\)*đúng*
Vậy bổ đề được chứng minh
Áp dụng vào bài toán, ta được: \(\left(xy+yz+zx\right)^2\ge3xyz\left(x+y+z\right)\)hay \(\left(xy+yz+zx\right)^2\ge3\left(x+y+z\right)\)(Do xyz = 1)
\(\Leftrightarrow\frac{1}{x+y+z}\ge\frac{3}{\left(xy+yz+zx\right)^2}\Rightarrow A\ge\frac{3}{\left(xy+yz+zx\right)^2}-\frac{2}{xy+yz+zx}\)
Đặt \(\frac{1}{xy+yz+zx}=s\)thì \(A\ge3s^2-2s=3\left(s^2-\frac{2}{3}s+\frac{1}{9}\right)-\frac{1}{3}=3\left(s-\frac{1}{3}\right)^2-\frac{1}{3}\ge-\frac{1}{3}\)
Vậy \(A\ge-\frac{1}{3}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x,y,z>0\\x=y=z\\\frac{1}{xy+yz+zx}=\frac{1}{3}\end{cases}}\Rightarrow x=y=z=1\)
Vậy \(MinA=-\frac{1}{3}\), đạt được khi x = y = z = 1
cho x, y, z là các số không âm thỏa mãn x+y+z=1
a) Chứng minh rằng \(xyz\ge\left(x+y-z\right)\left(y+z-x\right)\left(z+x-y\right)\)
b) Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2+\frac{9}{2}xyz.\)
a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)
Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)
Vật bất đẳng thức được chứng minh
Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)
Cho các số thực dương x,y,z. Tìm giá trị nhỏ nhất của biểu thức P= (xy+yz+zx) / (x²+y²+z²) + (x+y+z)³ / xyz
Cho x ² + y ² + z ² = 3 và x; y; z >0 . Tìm giá trị lớn nhất của
\(M=\frac{xyz}{x^2+yz}+\frac{xyz}{y^2+zx}+\frac{xyz}{z^2+xy}\)
Ta có: \(3=x^2+y^2+z^2\ge xy+yz+xz\ge\frac{\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}{3}\)
=> \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\le3\)
\(M=\frac{xyz}{x^2+yz}+\frac{xyz}{y^2+zx}+\frac{xyz}{z^2+xy}\)
\(\le\frac{xyz}{2x\sqrt{yz}}+\frac{xyz}{2y\sqrt{xz}}+\frac{xyz}{2z\sqrt{xy}}\)
\(=\frac{1}{2}\left(\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\right)\le\frac{3}{2}\)
Dấu "=" xảy ra <=> x = y = z=1