Cho x, y, z là các số thực dương thỏa mãn: xyz = 1. Tìm giá trị nhỏ nhất của
biểu thức A =\(\dfrac{1}{x+y+z}-\dfrac{2}{xy+yz+zx}\)
Cho x, y, z là các số thực dương thỏa mãn xyz = 1.
Tìm giá trị lớn nhất của biểu thức \(Â=x\sqrt{yz}+y\sqrt{zx}+z\sqrt{xy}\)
cho ba số thực không âm x,y,z thỏa mãn xyz=1 . tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M=\(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\)
Cho các số dương x, y, z thay đổi thỏa mãn \(x+y+z=1\)
Tìm giá trị lớn nhất của biểu thức:
\(S=\frac{xy+yz+zx-xyz}{xy+yz+zx+xyz+2}\)
Cho các số thực dương x, y, z. Tìm giá trị lớn nhất của biểu thức:
\(A=\frac{xyz\left(x+y+z+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}\)
Cho các số thực dương x, y, z thõa mãn \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\). tìm giá trị nhỏ nhất của biểu thức P=\(\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)
1. Cho x,y,z là ba số dương thay đổi và thỏa mãn \(^{x^2+y^2+z^2\le xyz}\)
Hãy tìm giá trị lớn nhất của biểu thức \(A=\frac{x}{x^2+yz}+\frac{y}{y^2+zx}+\frac{z}{z^2+xy}\)
2. Cho x,y,z là các số thực không âm thỏa mãn \(x^2+y^2+z^2=3\)
Tìm giá trị lớn nhất của biểu thức \(B=xy+yz+zx+\frac{5}{x+y+z}\)
Cho ba số dương x,y,z thỏa mãn x+y+z=1. Tìm giá trị nhỏ nhất của biểu thức P=(xy/z)+(yz/x)+(zx/y)
Cho 3 số thực dương x,y,z thỏa mãn xy+yz+zx=xyz. Tìm giá trị nhỏ nhất của biểu thức
\(H=\frac{x^2}{9z+zx^2}+\frac{y^2}{9x+xy^2}+\frac{z^2}{9y+yz^2}.\)
Pls giúp mk vs.Mình sẽ đánh giá tốt.