B=(4/x(x^2-4)+x-2/x^2-4):(x-2/x(x+2)-x/2x+4)
bài 1 rút gọn biểu thức
a) (2x-5)^2-4x(x+3)
b) (x-2)^3 -6(x+4)(x-4)-(x-2)(x^2+2x+4)
c)(x-1)^2-2(x-1)(x+2)+(x+2)^2+5(2x-3)
bài 2 rút gọn biểu thức
a)(2-3x)^2-5x(x-4)+4(x-1)
b)(3-x)(x^2+3x+9)+(x-3)^3
c)(x-4)^2(x+4)-(x-4)(x+4)^2+3(x^2-16)
1:
a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)
\(=4x^2-20x+25-4x^2-12x\)
=-32x+25
b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)
\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)
c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)
\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)
\(=\left(-3\right)^2+5\left(2x-3\right)\)
\(=9+10x-15=10x-6\)
2:
a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)
\(=9x^2-12x+4-5x^2+20x+4x-4\)
\(=4x^2+12x\)
b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)
\(=27-x^3+x^3-9x^2+27x-27\)
\(=-9x^2+27x\)
c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)
\(=-5\left(x^2-16\right)=-5x^2+80\)
\(\left(x-2\right)\left(x^2+2x+4\right)+3x-4=\left(x+2\right)\left(x^2-2x+4\right)-x+1\)
\(\Rightarrow\left(x^3-8\right)+3x-4=\left(x^3+8\right)-x+1\)
\(\Rightarrow x^3-8+3x-4=x^3+8-x+1\)
\(\Rightarrow x^3-x^3+3x+x=8+8+4+1\)
\(\Rightarrow4x=21\)
\(\Rightarrow x=\dfrac{21}{5}\)
Rút gọn: a) (8-5x).( x+2) + 4.(x-2).(x+1) + 2.(x-2).(x+2)+10
b) (x-2).(x^2 + 28+4) - (x+2).(x^2 - 2x +4)
c) (x+2).(x^2-2x+4) - (x^3+5
Rút gọn
a) \(\dfrac{x^5-2x^4+2x^3-4x^2-3x+6}{x+4}\)
b) \(\dfrac{x^4-4x^2+3}{x^4+6x^2-7}\)
c) \(\dfrac{x^4+x^3-x-1}{x^4+x^3+2x^2+x+1}\)
\(a,=\dfrac{x^4\left(x-2\right)+2x^2\left(x-2\right)-3\left(x-2\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x^4+2x^2-3\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x^4-x^2+3x^2-3\right)}{x+4}\\ =\dfrac{\left(x-2\right)\left(x-1\right)\left(x^2+3\right)}{x+4}\)
\(b,=\dfrac{x^4-3x^2-x^2+3}{x^4-x^2+7x^2-7}=\dfrac{\left(x^2-3\right)\left(x^2-1\right)}{\left(x^2+7\right)\left(x^2-1\right)}=\dfrac{x^2-3}{x^2+7}\\ c,=\dfrac{\left(x^3-1\right)\left(x+1\right)}{x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)}\\ =\dfrac{\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)}{\left(x^2+1\right)\left(x^2+x+1\right)}=\dfrac{x^2-1}{x^2+1}\)
a.(2x^2+x+1)(2x^2+x-4)=-4
b.(x-3)(x-2)(x+1)(x+2)=60
c.(x+2)^4+(x+4)^4=16
Bài 1: Làm tính nhân
a) -3x^2 . ( 2x^3 - 2x + 1/3 )
b) ( x^4 + 2x^3 - 2/3 ) . ( -3x^4 )
c) ( x + 3 ) . ( x - 4 )
d) ( x - 4 ) . ( x^2 + 4x + 16 )
e) 4. ( x - 1/2 ) . ( x + 1/2 ) . ( 4x^2 + 1 )
Bài 2: Tìm x, biết
a) ( 2 - x ) . (x^2 + 2x + 4 ) + x . ( x - 3 ) . ( x + 4 ) - x^2 + 24 = 0
b) (x/2 + 3 ) . ( 5 - 6x ) + ( 12x - 2 ) . ( x/4 + 3 ) = 0
Bài 1: Làm tính nhân
a) -3x^2 . ( 2x^3 - 2x + 1/3 )
b) ( x^4 + 2x^3 - 2/3 ) . ( -3x^4 )
c) ( x + 3 ) . ( x - 4 )
d) ( x - 4 ) . ( x^2 + 4x + 16 )
e) 4. ( x - 1/2 ) . ( x + 1/2 ) . ( 4x^2 + 1 )
Bài 2: Tìm x, biết
a) ( 2 - x ) . (x^2 + 2x + 4 ) + x . ( x - 3 ) . ( x + 4 ) - x^2 + 24 = 0
b) (x/2 + 3 ) . ( 5 - 6x ) + ( 12x - 2 ) . ( x/4 + 3 ) = 0
1a) -3x2(2x3 - 2x + 1/3) = -6x5 + 6x3 - x2
b) (x4 + 2x3 - 2/3).(-3x4) = -3x8 - 6x7 + 2x4
c) (x + 3)(x - 4) = x2 - 4x + 3x - 12 = x2 - x - 12
d)(x - 4)(x2 + 4x + 16) = (x - 4)(x2 + 4x + 42) = x3 - 64
e) 4(x - 1/2)(x + 1/2)(4x2 + 1) =4(x2 - 1/4)(4x2 + 1) = 4(4x4 + x2 - x2 - 1/4) = 4(4x4 - 1/4) = 16x4 - 1
B2. a) (2 - x)(x2 + 2x + 4) + x(x - 3)(x + 4) - x2 + 24 = 0
=> 8 - x3 + x(x2 + 4x - 3x - 12) - x2 + 24 = 0
=> 8 - x3 + x3 + x2 - 12x - x2 + 24 = 0
=> -12x + 32 = 0
=> -12x = -32
=> x = -32 : (-12) = 8/3
b) (x/2 + 3)(5 - 6x) + (12x - 2)(x/4 + 3) = 0
=> 5x/2 - 3x2 + 15 - 18x + 3x2 + 36x - x/2 - 6 = 0
=> 20x + 9 = 0
=> 20x = -9
=> x = -9/20
giai phuong trinh
a) x+1/x^2+x+1 - x-1/x^2-x+1 = 3/x(x^4+x^2+1)
b) x+2/x^2+2x+4 - x-2/x^2-2x+4 = 6/x(x^4+4x^2+16)
Tìm x
2xy^2+x-6y^2-3=0
Thực hiện phép tính
a)P=x^2-2x-3/x-4 + 3-2x/x-4 (x khác 4)
b)Q=(6-x^2/x^2-4 - x/2-x) chia x+3/x+2 (x khác 2;-2;-3)
a: \(P=\dfrac{x^2-2x-3+3-2x}{x-4}=\dfrac{x^2-4x}{x-4}=x\)