Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
chien Nguyen
Xem chi tiết

Ta có: \(\frac{2z-4x}{3}=\frac{3x-2y}{4}=\frac{4y-3z}{2}\)

=>\(\frac{6z-12x}{9}=\frac{12x-8y}{16}=\frac{8y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{6z-12x}{9}=\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6z-12x+12x-8y+8y-6z}{9+16+4}=0\)

=>6z-12x=0 và 12x-8y=0 và 8y-6z=0

=>12x=8y=6z

=>\(\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)

=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

=>x=2k; y=3k; z=4k(Với k∈N*)

\(200

=>\(200<\left(3k\right)^2+\left(4k\right)^2<450\)

=>\(200<25k^2<450\)

=>\(8

mà k là số nguyên dương

nên k∈{3;4}

TH1: k=3

=>\(\begin{cases}x=2\cdot3=6\\ y=3\cdot3=9\\ z=4\cdot3=12\end{cases}\)

TH2: k=4

=>\(\begin{cases}x=2\cdot4=8\\ y=3\cdot4=12\\ z=4\cdot4=16\end{cases}\)

Trần Thanh Trà
Xem chi tiết
Nguyễn Anh Quân
13 tháng 1 2018 lúc 22:25

pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0

<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0

<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12

<=> (3x+2y+2)^2 - (y+1)^2 = -12

<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12

<=> (3x+3y+3).(3x+y+1) = -12

<=> (x+y+1).(3x+y+1) = -4

Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !

Tk mk nha

dâu cute
Xem chi tiết
shiyori
4 tháng 7 2023 lúc 16:06

(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

2z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0

⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450

⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương ⇒128<z<288

⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34z

⇒z∈{12;16}

Thế vào y=34z và 2z-4x=0

+) Với z=12⇒y=34.12=6

                    2.12-4x=0⇒x=6

Với z=16⇒y=34.16=12

    2.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là: 

shiyori
4 tháng 7 2023 lúc 16:06

(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

2z−4x3=3x−2y4=4y−3z2⇒3(2z−4x)9=4(3x−2y)16=2(4y−3z)4=6z−12x+12x−8y+8y−6z9+16+4=0

⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450

⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương ⇒128<z<288

⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34z

⇒z∈{12;16}

Thế vào y=34z và 2z-4x=0

+) Với z=12⇒y=34.12=6

                    2.12-4x=0⇒x=6

Với z=16⇒y=34.16=12

    2.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là: 

shiyori
4 tháng 7 2023 lúc 16:32

(x;y;z)={(6;9;12);(8;12;16)}

Giải thích các bước giải:

⇒{2z−4x=03x−2y=04y−3z=0⇒y=34z

mà 200<y2+z2<450

⇒200<(34z)2+z2<450⇔200<2516z2<450⇔128<z2<288

Vì z là số nguyên dương ⇒128<z<288

⇒z∈{12;13;14;15;16}

mà y là số nguyên dương và y=34z

⇒z∈{12;16}

Thế vào y=34z và 2z-4x=0

+) Với z=12⇒y=34.12=6

                    2.12-4x=0⇒x=6

Với z=16⇒y=34.16=12

    2.16-4x=0⇒x=8

Vậy ta có các cặp nghiệm là:

khôi lê nguyễn kim
Xem chi tiết
Thanh Tùng DZ
30 tháng 10 2019 lúc 19:38

Nguyễn Linh Chi : cô làm cách đó là thiếu nghiệm rồi cô

\(\left(x^2+1\right)\left(x^2+y^2\right)=4x^2y\)

\(\Leftrightarrow x^4+x^2+x^2y^2+y^2-4x^2y=0\)

\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-2x^2y+x^2y^2\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)^2+\left(x\left(y-1\right)\right)^2=0\)

\(\Leftrightarrow x^2-y=x\left(y-1\right)=0\)

\(\Leftrightarrow x^2-y-xy+x=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=-1\end{cases}}\)

+) x = -1 suy ra y = 1

+) x = y . từ đó tìm được \(\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)

Khách vãng lai đã xóa
Thanh Tùng DZ
30 tháng 10 2019 lúc 20:54

ai tích mình sai vậy ạ, xin lí do

Khách vãng lai đã xóa
Phùng Minh Quân
31 tháng 10 2019 lúc 5:03

làm cách đó xét nghiệm cũng đủ mà \(\hept{\begin{cases}x^2=1\\x^2=y^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\x=\pm y\end{cases}}\Rightarrow y=\pm1\Rightarrow\orbr{\begin{cases}x=y=0\\x=y=1\end{cases}}\)

Khách vãng lai đã xóa
đỗ thanh hà
Xem chi tiết
Sakura
Xem chi tiết
Vũ Việt Hoàng
Xem chi tiết
Mr Lazy
27 tháng 6 2015 lúc 21:28

\(VP=3-\left(y^2-2y+1\right)=3-\left(y-1\right)^2\le3\)(Dấu "=" xảy ra khi \(y=1\)

Nhìn đề bài ta đoán dạng bất đẳng thức, có \(VP\le3\), giờ ta chứng minh \(VT\ge3\)

Thật vậy, ta có

 \(\frac{4x^2-4x+7}{x^2+1}-3=\frac{4x^2-4x+7-3\left(x^2+1\right)}{x^2+1}=\frac{x^2-4x+4}{x^2+1}\)

\(=\frac{\left(x-2\right)^2}{x^2+1}\ge0\)

Do đó; \(\frac{4x^2-4x+7}{x^2+1}\ge3\)(dấu "=" xảy ra khi \(x=2\))

\(\Rightarrow\frac{4x^2-4x+7}{x^2+1}\ge3\ge2+2y-y^2\)

\(VT=VP\Leftrightarrow VT=3;VP=3\)

\(\Leftrightarrow x=3;y=1\)

 

 

TalaTeleĐiĐâuĐấy?
Xem chi tiết
TalaTeleĐiĐâuĐấy?
30 tháng 11 2023 lúc 20:46

Cíu ét o ét

Lê Hoàng Khánh Nam
Xem chi tiết

Ta có: \(\frac{2z-4x}{3}=\frac{3x-2y}{4}=\frac{4y-3z}{2}\)

=>\(\frac{6z-12x}{9}=\frac{12x-8y}{16}=\frac{8y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{6z-12x}{9}=\frac{12x-8y}{16}=\frac{8y-6z}{4}=\frac{6x-12x+12x-8y+8y-6z}{9+16+4}=0\)

=>12x=8y=6z

=>\(\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)

=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

=>x=2k; y=3k; z=4k

Vì x;y;z là các số nguyên dương nên k là số nguyên dương

\(200

=>\(200<\left(3k\right)^2+\left(4k\right)^2<450\)

=>\(200<25k^2<450\)

=>\(8

mà k là số nguyên dương

nên k∈{3;4}

TH1: k=3

=>\(\begin{cases}x=2\cdot3=6\\ y=3\cdot3=9\\ z=4\cdot3=12\end{cases}\)

TH2: k=4

=>\(\begin{cases}x=2\cdot4=8\\ y=3\cdot4=12\\ z=4\cdot4=16\end{cases}\)

mà k